Open vSwitch and the Intelligent Edge

Justin Pettit
OpenStack 2014 Atlanta
Hypervisor as Edge

 VM1 VM2 VM3

Open vSwitch

Hypervisor
An Intelligent Edge

• We view the hypervisor as the edge of the network
• An intelligent edge is in a unique position (the “Goldilocks Zone”)
 – Greater context than in-network devices
 • Without tags, network must rely on fields that are easily spoofed
 • Tags provide limited amount of context
 – Reduced risk of attack than an agent running in the guest
 • Policies enforced in the hypervisor – outside of the guest
 – Enforce policies earlier
 • Clouds typically have over-subscribed links and untrusted sources
• Different parts of the system can coordinate with each other
• Can affect many things
 – Networking
 – Security
Network Control and Visibility

• In an ideal location
• Able to infer state by observing, or probe state with introspection
• Mapping of logical to physical before going into the fabric
• Can modify behavior
 – Enforce policy at tunnel ingress and egress
 – Modify bits in the inner or outer packet
 – TCP Pacing
 – TCP De-synchronization
 – Flowlets
Inferring State

• Sees every packet and knows local source
 – Learn MAC and IP on first use
 – IGMP and DHCP snooping
 – Which pairs are communicating
 – Flow characteristics
Guest Introspection

• An agent runs in the VM that communicates with a daemon in the hypervisor

• Types of data retrieved
 – Users
 – Identity for both inbound and outbound network connections
 – Identity (user and version/hash) of processes
 – Data transfer rates
 – Socket queue depth
 – System characteristics
Applications for Greater State

- QoS
- Load-balancing
- Selecting traffic to be sent to middlebox (NFV)
- Better firewalls
- Elephant flow detection and handling
Security
Implementing a Firewall

- Currently, two ways to implement a firewall in OVS
 - Match on TCP flags (Enforce policy on SYN, allow ACK|RST)
 - Pro: Fast
 - Con: Allows non-established flow through with ACK or RST set, only TCP
 - Use “learn” action to setup new flow in reverse direction
 - Pro: More “correct”
 - Con: Forces every new flow to OVS userspace, reducing flow setup by orders of magnitude
 - Neither approach supports “related” flows or TCP window enforcement
Connection Tracking

• We are adding the ability to use the conntrack module from Linux
 – Stateful tracking of flows
 – Supports ALGs to punch holes for related “data” channels
 • FTP
 • TFTP
 • SIP

• Implement a distributed firewall with enforcement at the edge
 – Better performance
 – Better visibility

• Introduce new OpenFlow extensions:
 – Action to send to conntrack
 – Match fields on state of connection

• Have prototype working. Expect to ship as part of OVS by end of year
Guest Introspection + Connection Tracking

- Possible to implement an advanced firewall
 - Know precisely what user is generating traffic
 - Know precisely what application and version is generating traffic
Elephant Flows
Elephants versus Mice

- Majority of flow are short-lived (mice), but majority of packets are long-lived (elephants)
- Mice tend to be bursty and latency-sensitive
- Elephants tend to transfer large amount of data and less concerned about latency
- Elephants can fill up network buffers, which introduce latency for mice
- At the edge, we are able to affect the underlay based on the overlay
Detection and Action

• Multiple mechanisms for detection:
 – Rate and time
 – Large segments (TCP only)
 – Guest introspection

• Multiple mechanisms for action:
 – Put mice and elephants into different queues
 – Route elephants differently from mice
 – Send elephants along a separate physical network
 – Intelligent underlay
NSX Deployment

- VM1: 192.168.0.1
- Open vSwitch
- HV1: 17.0.0.1
- VXLAN Tunnel
- VM2: 192.168.0.2
- Open vSwitch
- HV2: 17.0.0.2
- NSX Control Cluster
Handling Elephants in NSX

• Open vSwitch is at an optimal location at the edge
 – Has flow-level view of all the hypervisor’s traffic
 – Knows mapping between logical and physical addresses

• Detection and action occur separately, so can evolve independently

• Supported detection mechanisms:
 – Rate and time
 – Large segments

• Supported actions:
 – Mark DSCP bits in (outer) IP header
 – Add elephant flows to OVSDB column for underlay agent
Elephant Flows with SDN Controller

- OVS identifies elephants as the appear on the wire through OVSDB
- An agent monitors OVSDB and makes appropriate API calls to the SDN controller
- Shown as a VMware-HP Technology Preview
Elephant Flows with DSCP Marking

- Signaling of elephants occur at the hypervisor by marking the (outer) IP header
- Switches configured to handle elephant-marked packets appropriately
- Working on an Internet Draft for recommended DSCP values
Testing Results with Cumulus Networks

• Used a modified OVS that detects elephant flows by counting the number of bytes each flow generates. When the user-configurable threshold is crossed, elephants are marked with a particular DSCP value.
• The Cumulus switches place elephant marked flows into an alternate queue
Test Topology

- **Sources**
 - VMs connected via vSwitch
 - 10G connection to network

- **Network Paths**
 - 1G “normal” link
 - easy to congest with VM traffic sources
 - 10G “alternative” link

- **Sink**
 - bare metal server
 - 10G connection from network
Traffic Generation and Result Measurement

• Generators
 – elephants – nuttcp
 • fixed time transfers, 4M window
 – mice – small (10ms) interval pings
 • mimics tcp-acks, lock release, small db transactions

• Results
 – elephants
 • realized bandwidth, drops
 – mice
 • mean-time-to-completion, drops
Results – flow statistic detection & alternate queue reaction

Mice vs Elephants (Detection off)

Bandwidth (Mbps)

Latency (ms)

Time (Secs)
Results – flow statistic detection & alternate queue reaction

Mice vs Elephants (Detection on)
Results – flow statistic detection & alternate queue reaction

<table>
<thead>
<tr>
<th>test case (120 sec period)</th>
<th>elephant</th>
<th>mouse</th>
<th>mouse vs elephant w/detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mbps</td>
<td>drops</td>
<td>Latency (ms)</td>
</tr>
<tr>
<td>elephant only</td>
<td>941</td>
<td>63</td>
<td>N/A</td>
</tr>
<tr>
<td>mouse only</td>
<td>N/A</td>
<td>N/A</td>
<td>0.444</td>
</tr>
<tr>
<td>mouse vs elephant no detection</td>
<td>941</td>
<td>61</td>
<td>3.055</td>
</tr>
<tr>
<td>mouse vs elephant w/detection</td>
<td>937</td>
<td>1223</td>
<td>0.401</td>
</tr>
</tbody>
</table>
Open vSwitch Elephant POC Architecture

- Implemented in kernel
- Supports both threshold-based detection and TSO packet size
- Just proof of concept to try out different detection mechanisms and actions
- Proof of concept code will be available on Github
Elephant Flow References

- Network Traffic Characteristics of Data Centers in the Wild

- Of Mice and Elephants

- Elephant Flow Mitigation via Virtual-Physical Communication
Learn more about VMware + OpenStack at the following sessions:

<table>
<thead>
<tr>
<th>Monday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware Demo</td>
<td>VMware + OpenStack: Accelerating OpenStack In The Enterprise</td>
</tr>
<tr>
<td>1:00-1:15 pm, Demo Theater</td>
<td>1:50-2:30 pm, B313</td>
</tr>
<tr>
<td>Enterprise Grade Scheduling</td>
<td>Deep-dive Demo for OpenStack On VMware</td>
</tr>
<tr>
<td>4:40-5:20 pm, B206</td>
<td>2:40-3:20 pm, B313</td>
</tr>
<tr>
<td>Bridging The Gap: OpenStack For VMware Administrators</td>
<td>OpenStack Distribution Support For vSphere + NSX</td>
</tr>
<tr>
<td>5:30-6:10 pm, B206</td>
<td>3:30-4:10 pm, B313</td>
</tr>
<tr>
<td>Software Defined Networking Performance And Architecture Evaluation</td>
<td>Congress: A System For Declaring, Auditing, and Enforcing Policy In Heterogeneous Cloud Environments</td>
</tr>
<tr>
<td>5:30-6:10 pm, B103</td>
<td>4:30-5:10 pm, B313</td>
</tr>
<tr>
<td>Presented by Symantec & Mirantis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Neutron For Large Deployments</td>
<td>Recap: Nova-network Or Neutron For OpenStack Networking?</td>
</tr>
<tr>
<td>4:40-5:20 pm, B101</td>
<td>9:50-10:30 am, B309</td>
</tr>
<tr>
<td>Presented by eBay & PayPal</td>
<td></td>
</tr>
<tr>
<td>Open vSwitch And The Intelligent Edge</td>
<td>Leveraging VMware Technology To Build An Enterprise Grade OpenStack Cloud - It's Not Always About KVM!</td>
</tr>
<tr>
<td>5:30-6:10 pm, B206</td>
<td>2:20-3:00 pm, B101</td>
</tr>
<tr>
<td></td>
<td>Presented by iLand</td>
</tr>
</tbody>
</table>