Debugging OVS

Justin Pettit
April 14, 2011
Main Components

- **Control Cluster**
 - ovsdb-server
 - ovs-vswitchd

- **User Kernel**
 - openvswitch_mod.ko

- **Off-box**
 - Management Protocol (6632/TCP)
 - OpenFlow (6633/TCP)
 - Netlink
Debugging the Database

- ovs-vsct1: Configures ovs-vswitchd, but really a high-level interface for database
 - ovs-vsct1 list-br
 - ovs-vsct1 list-ports <bridge>
 - ovs-vsct1 get-manager <bridge>
 - ovs-vsct1 get-controller <bridge>
 - ovs-vsct1 list <table>
- ovsdb-tool: Command-line tool for managing database file
 - ovsdb-tool show-log [-mmm] <file>
“Open_vSwitch” is the root table and there is always only a single row. The tables here are the ones most commonly used; a full entity-relationship diagram is available in the ovs-vswitchd.conf.db man page.
ovsdb-tool show-log

[root@localhost ~]# ovsdb-tool show-log -m /etc/openvswitch/conf.db
...
record 3: 2011-04-13 16:03:52 "ovs-vsctl: /usr/bin/ovs-vsctl --timeout=20 --with-iface --if-exists del-port eth0 -- --may-exist add-br xenbr0 -- --may-exist add-port xenbr0 eth0 -- set Bridge xenbr0 "other-config:hwaddr=\"00:0c:29:ab:f1:e9\"" -- set Bridge xenbr0 fail_mode=standalone -- remove Bridge xenbr0 other_config disable-in-band -- br-set-external-id xenbr0 xs-network-uuids 9ae8bc91-cfb8-b873-1947-b9c4098e4f4b"
...

<table>
<thead>
<tr>
<th>Record number</th>
<th>Time of Change</th>
<th>Caller's comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2011-04-13 16:03:52</td>
<td>ovs-vsctl: /usr/bin/ovs-vsctl --timeout=20 --with-iface --if-exists del-port eth0 -- --may-exist add-br xenbr0 -- --may-exist add-port xenbr0 eth0 -- set Bridge xenbr0 "other-config:hwaddr="00:0c:29:ab:f1:e9"" -- set Bridge xenbr0 fail_mode=standalone -- remove Bridge xenbr0 other_config disable-in-band -- br-set-external-id xenbr0 xs-network-uuids 9ae8bc91-cfb8-b873-1947-b9c4098e4f4b"</td>
</tr>
</tbody>
</table>

Database changes:
- table Port insert row "xenbr0":
- table Port insert row "eth0":
- table Interface insert row "eth0":
- table Interface insert row "xenbr0":
- table Open_vSwitch row a1863ada:
- table Bridge insert row "xenbr0":
...
OpenFlow

- ovs-ofctl speaks to OpenFlow module
 - ovs-ofctl dump-flows <bridge>
 - ovs-ofctl snoop <bridge>

- OpenFlow 1.0 plus extensions
 - Resubmit Action: Simulate multiple tables in a single table
 - NXM: Extensible match
 - Registers: Four 32-bit metadata registers

- See “hidden” flows (in-band, fail-open, etc):
 - ovs-appctl bridge/dump-flows <bridge>
Connectivity to Control Cluster

- State of connection tracked in database
 - ovs-vsctl list controller
 - ovs-vsctl list manager

- “status” column may contain the following members:
 - state: ACTIVE indicates that connection is good
 - sec_since_connect
 - sec_since_disconnect
 - last_error
Kernel Datapath

- ovs-dpctl speaks to kernel module
- See datapaths and their attached interfaces:
 - ovs-dpctl show [bridge]
- Exact match flows cached in datapath:
 - ovs-dpctl dump-flows <bridge>
ovs-dpctl show

hit: Packets hit existing entry
missed: Packets sent to userspace

Interfaces:
- system@br0:
 - lookups: frags:0, hit:5486, missed:4381, lost:0
 - port 0: pool (internal)
 - port 1: p11 (patch: peer=p10)
 - port 2: p13 (patch: peer=p12)
 - port 3: sgre_3d000002 (ipsec_gre: csum=true, key=flow, pmtud=false, remote_ip=61.0.0.2)
 - port 4: gre_33000002 (gre: key=flow, remote_ip=51.0.0.2)
 - port 5: gre_33000003 (gre: key=flow, remote_ip=51.0.0.3)

lost: Dropped before getting to userspace

Interface name
Interface type
Interface options
(OpenFlow) Port number
Tunnels

- Tunnels in OVS are just virtual ports with own OpenFlow port number
- Keys set statically at creation time or dynamically through OpenFlow action
- Types:
 - GRE
 - GRE-over-IPsec
 - CAPWAP
- Visible in kernel datapath:
 - ovs-dpctl show
IPsec Tunnels

- ovs-monitor-ipsec monitors database for changes and updates IPsec configuration
- racoon handles key negotiation (IKE)
- setkey configures security kernel databases
- SPD (Security Policy Database) determines when traffic should be encrypted
 - Dump SPD: setkey -DP
 - Flush SPD: setkey -FP
- SAD (Security Association Database) contains state for active flows
 - Dump SAD: setkey -D
 - Flush SAD: setkey -F
IPsec Components

- racoon
- ovs-monitor-ipsec
- setkey
- openvswitch_mod.ko
- ovsdb-server
- ovs-vswitchd
- SPD
- SAD

Control Cluster

Off-box

User

Kernel
IPsec Traffic Analysis

• Encrypted traffic on the PIF

```plaintext
root@squeeze-2:~# tcpdump -ni eth0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
12:36:45.974167 IP 172.16.5.57 > 172.16.3.79: ESP(spi=0x0baaab15,seq=0x33), length 124
12:36:45.974249 IP 172.16.3.79 > 172.16.5.57: ESP(spi=0x014d5d92,seq=0x35), length 124
```

• Decrypted traffic on the bridge

```plaintext
root@squeeze-2:~# tcpdump -ni br0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on br0, link-type EN10MB (Ethernet), capture size 65535 bytes
12:36:54.971521 IP 12.0.0.1 > 12.0.0.2: ICMP echo request, id 28173, seq 50, length 64
12:36:54.971536 IP 12.0.0.2 > 12.0.0.1: ICMP echo reply, id 28173, seq 50, length 64
```
XenServer

• Is it running? An upgrade doesn’t necessarily enable OVS:
 – service openvswitch status

• Enable OVS:
 – xe-switch-network-backend openvswitch

• Disable OVS:
 – xe-switch-network-backend bridge
Logging

- ovs-appctl configures running OVS daemons
- Most common use is to modify logging levels
- By default configures ovs-vswitchd, but “-t” option changes target
- Default level for log files is “info”, only thing lower is “dbg”

```
[root@localhost ~]# ovs-appctl vlog/list

<table>
<thead>
<tr>
<th></th>
<th>console</th>
<th>syslog</th>
<th>file</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge</td>
<td>EMER</td>
<td>ERR</td>
<td>INFO</td>
</tr>
<tr>
<td>vswitchd</td>
<td>EMER</td>
<td>ERR</td>
<td>INFO</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[root@localhost ~]# ovs-appctl vlog/set ofproto:file:dbg
```
Log Files

• Open vSwitch logs: /var/log/openvswitch/*
 – ovs-vswitchd.log
 – ovsdb-server.log
• System: /var/log/messages
• IPsec: /var/log/daemon.log
Debugging Tips

• Test basic connectivity
 – Remote side up?
 – STP learning state?

• Use tcpdump to see if expected packets are on the wire

• Try it without OVS
Catastrophe!

• Bug details:
 – What were you doing when it happened?
 – OVS build number
 – OS version

• Collect logs and system state to aid debugging:
 – XenServer: xen-bugtool
 – Debian: ovs-bugtool

• Core dump
 – Check the version number, it may be old:
 • strings <core> | grep version

• Kernel Panic
 – Take picture of screen may be easiest
Final Thought

Read the documentation...it’s pretty good!