OVN:
Scaleable Virtual Networking for Open vSwitch

Kyle Mestery (@mestery)
Justin Pettit (@Justin_D_Pettit)
The Case for Network Virtualization

- Network provisioning needs to be self-service.
- Virtual networking needs to be abstracted from physical.
- Virtual networking needs same features as physical.

Legacy Physical Network

Cloud Physical Network
What is OVN?

• Open source L2/L3 network virtualization for Open vSwitch (OVS):
 ✓ Logical switches
 ✓ IPv4 and IPv6 logical routers
 ✓ L2/L3/L4 ACLs (Security Groups)
 ✓ Multiple tunnel overlays (Geneve, STT, and VXLAN)
 ✓ Logical load-balancing
 ✓ TOR-based L2 logical-physical gateways
 ✓ Software-based L2/L3 logical-physical gateways

• Works on same platforms as OVS:
 ✓ Linux
 ✓ Containers
 ✓ DPDK

• Integration with:
 ✓ OpenStack Neutron
 ✓ Docker Swarm
 ✓ Kubernetes
The Particulars

• Developed by the same community as Open vSwitch
• Vendor-neutral
• Design and implementation all occur in public
• Developed under the Apache license
Goals

• Production-quality
• Straightforward design
• Scale to 1000s of hypervisors (each with many VMs/containers)
• Scale to 100s of thousands of ports
How is OVN Different?
OVN Architecture

- OpenStack/CMS Plugin
- Northbound DB
- ovn-northd
- Southbound DB
- ...
Architecture

• Configuration coordinated through databases
• Logical flows, don’t worry about physical topology
• Local controller converts logical flow state into physical flow state
• Desired state clearly separated from run-time state
• Based on the architecture we wanted from seeing a number of others using OVS
Data Plane Scale
Common Approach to Security Groups

• **OpenFlow**
 • Not truly stateful
 • Possibly bad performance

• **OpenStack**
 • Required extra linux bridge and veth pair per VM
 • Uses iptables
OVN Security Groups Design

- Uses kernel conntrack module directly from OVS
- Design benefits
 - No complicated pipeline
 - Faster* -- Fewer hops and veth ports

* http://blog.russellbryant.net/2015/10/22/openstack-security-groups-using-ovn-acls/
Security Group Throughput

TCP stream Local, 1 netperf threads

CPU Megacycles per Mbit

Packet Size

Mbit

iptables throughput
OVS throughput
iptables cycles
OVS cycles

64 128 512 1024 9000 64000

50 5,000

0 100 150 200 250 300 350 400 450 500

0 5,000 10,000 15,000 20,000 25,000
Common Approach to L3

- Agent-based
- Use the Linux IP stack and iptables
 - Forwarding
 - NAT
- Overlapping IP address support using namespaces
Example OpenStack L3
OVN L3 Design

• Native support for IPv4 and IPv6
• Distributed
• ARP/ND suppression
• Flow caching improves performance
 • Without OVN: multiple per-packet routing layers
 • With OVN: cache sets dest mac, decrements TTL
• No CMS-specific L3 agent
Control Plane Scale
Scale Test Framework

• Scalability test for OVN control-plane
• Simulate an entire OVN deployment
 • Use Rally for deployment and test automation
• TODO:
 • Neutron integration
 • L3 test
 • Non-Rally test cases
• Contributions welcome! 😊
 • https://github.com/openvswitch/ovn-scale-test.git
Current Scale (Pure OVN)

- ovn-scale-test framework
 - 400 and 200 emulated chassis tests
 - 1 single network
 - 1 ACL/port
 - Creating and binding ports in increments of 2k
- NOTE:
 - OVN components ran on 2 physical hosts (48 threads and 256GB RAM)
Scale Improvements - Ongoing

- ovn-controller
 - Incremental Computation
 - Conditional Monitoring
- ovn-northd
 - Incremental Computation
- OVSDB
 - Evaluation of an alternative database
Deployment
Deployment made easy

- No additional daemons to install on hypervisors beyond what comes with OVS
- Minimal host-level configuration
- Rolling upgrades
Rolling Upgrades

- OVSDB schema is versioned
- Changes to schema will be carefully managed to be backwards compatible
- Allows rolling upgrades
 - Update databases first
 - Roll through upgrades to ovn-controller
- Same strategy OVS itself has been using
Continuously Delivering OVN
Why Continuous Delivery of OVN?

- 90+ active developers working on OVS/OVN
- Hundreds to thousands of lines of code added daily - travis-ci jobs running to test this
- At large scale, automated testing is a given
- Delivering upstream fast means developers can work upstream, reducing technical debt
Continuous Delivery of OVS/OVN

Lines of code changed

Date

Continuously Deploying OVN and OVS
What About Delivering Releases?

LoC in OVS Releases Over Time

- Lines of code changed
- LoC in OVS releases over time from March 2014 to February 2016, with peaks in August 2014 and August 2015.
One Way To Continuously Deliver

● Align with OpenStack CI/CD
 ○ Same tools upstream
 ■ Zuul (Pipeline management)
 ■ Nodepool (resource management)
 ■ Gerrit (code review)
 ○ Build our own packages

● Ability to carry local patches
 ○ Needed for security patches
 ○ Also for bugs and features not landed upstream yet
Status
Neutron Integration Status

- http://docs.openstack.org/developer/networking-ovn/features.html
- Neutron plugin supports
 - L2 networks
 - Provider Networks
 - Security Groups
 - QoS API
 - Native DHCP
 - Linux Kernel or DPDK datapaths
 - binding:profile for containers in VMs without another overlay
 - binding:profile for connecting vtep gateways to Neutron networks
- Can use OVN native L3 or Neutron L3 agent
OVN vs. OVS Python Agents

- Improved performance and stability over existing OpenStack OVS plugin
 - No more RabbitMQ usage for Neutron!
 - Uses OVSDB in place of RabbitMQ
- Become preferred method for OpenStack+OVS integration for the majority of use cases
OpenStack Deployment Options

- Full devstack support
- Puppet OpenStack now supports OVN
- TripleO support posted for review
- Kolla support being planned
Upcoming Release

• Non-experimental for next OpenStack release (Newton)
• Recently landed features:
 • L3 gateway with NAT and load-balancing support
 • IPv6 logical routing
 • Native DHCP service
 • Address Set for ACL/Security group
 • Kubernetes support
Future Work

- Better database clustering and HA
- Avoid complete recalculations with incremental computation
- Native DNS support
- Live migration support for ACLs
- Hitless upgrades
Resources

• Architecture described in detail in ovn-architecture (5)
• Available in the “master” and “branch-2.6” branches of the main OVS repo:
 – https://github.com/openvswitch/ovs
 – http://openvswitch.org/support/dist-docs/
• Neutron plugin:
 – https://git.openstack.org/openstack/networking-ovn.git
• Neutron integration docs, including devstack instructions:
 – http://docs.openstack.org/developer/networking-ovn/
• Kubernetes plugin and documentation:
 – https://github.com/openvswitch/ovn-kubernetes
• OVN scale test harness
 – https://github.com/openvswitch/ovn-scale-test.git
How you can help

• Try it! Test it! Scale it! Report bugs! Write Code!
• Core OVN is being developed on ovs-dev mailing list:
 – #openvswitch on Freenode
• Neutron plugin for OVN is being developed here:
 – http://git.openstack.org/openstack/networking-ovn.git
 – openstack-dev mailing list
 – #openstack-neutron-ovn on Freenode
Thank you! Questions?

Justin Pettit (@Justin_D_Pettit)
Kyle Mestery (@mestery)