Practical OVN: Architecture, Deployment, and Scale of OpenStack Networking

Justin Pettit (@Justin_D_Pettit) Ben Pfaff (@Ben_Pfaff) Han Zhou (@zhouhanok) Ryan Moats (@regxboi)

The Case for Network Virtualization

- Network provisioning needs to be self-service.
- Virtual network needs to be abstracted from physical.
- Virtual network needs same features as physical.

What is OVN?

- Open source L2/L3 network virtualization for Open vSwitch (OVS):
 - ✓ Logical switches
 - ✓ L2/L3/L4 ACLs (Security Groups)
 - ✓ Logical routers
 - ✓ Multiple tunnel overlays (Geneve, STT, and VXLAN)
 - TOR-based and software-based logical-physical gateways
- Works on same platforms as OVS:
 - ✓ Linux (KVM and Xen)
 - ✓ Containers (Docker)
 - ✓ DPDK
 - Hyper-V
- Integration with:
 - ✓ OpenStack Neutron
 - Other CMSes

The Particulars

- Developed by the same community as Open vSwitch
- Vendor-neutral
- Design and implementation all occur in public
- Developed under the Apache license
- Neutron plugin affiliation diversity in Mitaka release cycle
 - Top 5 reviewers from 5 companies
 - Top 4 committers from 4 companies
 - Would qualify for OpenStack team:diverse-affiliation tag if it were an independent project (not part of Neutron)

Goals

- Production-quality
- Straightforward design
- Scale to 1000s of hypervisors (each with many VMs/containers)
- Improved performance and stability over existing OpenStack OVS plugin
- Become preferred method for OpenStack+OVS integration for the majority of use cases

Why Should OpenStack Care?

- Neutron's primary job is to provide a cloud networking API abstraction
- OVN is a scope increase of OVS to implement many of the things Neutron needs
- If OVN succeeds in its mission, it reduces development burden on Neutron for OVS integration significantly
- Performance and scale improvements

How is OVN Different?

Architecture

- Configuration coordinated through databases
- Logical flows, don't worry about physical topology
- Local controller converts logical flow state into physical flow state
- Desired state clearly separated from run-time state
- Based on the architecture we wanted based on seeing a number of others using OVS

Data Plane Scale

Security Groups (The Original Way)

- Required extra linux bridge and veth pair per VM
- Uses iptables

Security Groups (OVN ACLs)

- Uses kernel conntrack module directly from OVS
- Design benefits
 - No complicated pipeline
 - Faster* -- Fewer
 hops and veth ports

* http://blog.russellbryant.net/2015/10/22/openstack-security-groups-using-ovn-acls/

Security Group Throughput

TCP stream Local, 1 netperf threads

sub-title

Packet Size

L3 (The Existing Way)

- Agent based
- Used the Linux IP stack and iptables
 - Forwarding
 - NAT
- Overlapping IP address support using namespaces

Current L3 Diagram

To Private Network

OVN L3 Design

- Native support for IPv4 and IPv6
- Distributed
- ARP/ND suppression
- Flow caching improves performance
 - Without OVN: multiple per-packet routing layers
 - With OVN: cache sets dest mac, decrements TTL
- No use of Neutron L3 agent

Control Plane Scale

Scale test framework

- Scalability test for OVN control-plane
- Simulated 2k HVs with 20 BMs
- Use Rally for deployment and test automation
- TODO:
 - Neutron integration
 - L3 test, ACL ...
- Contributions welcome! 😳
 - <u>https://github.com/openvswitch/ovn-scale-test.git</u>

Current Scale (Pure OVN)

Port creation & binding on 2k HVs

• L2

- 2k HVs
- 20k VIF ports (10 VIFs/HV)
- 200 logical switches
 - Each Iswitch spreading over 50 HVs
 - Each HV connected to 5 lswitches
- L3 to be tested

@3k HVs, port create times becomes slow - improvements ongoing

Scale Improvements - Achieved

- Bottleneck 1: ovsdb north-bound memory leak fix
- Bottleneck 2: split ovsdb north-bound and south-bound into separate processes
- Bottleneck 3: ovsdb south-bound connections probe tuning
- Bottleneck 4: ovn-controller
 - Local datapath optimization
 - Micro optimizations on ovn-controller
 - Bit operations on logical flow processing
 - Dynamic memory optimization for lexer
 - Jemalloc
- Localnet improvement
 - Model change: reduced 50% # of logical ports

Local Datapath Optimization

Scale Improvements - Ongoing

ovn-controller

- Incremental Computation
- Conditional Monitoring
- ovn-northd
 - Incremental Computation
- OVSDB
 - Multi-threading
- ACL
 - Address set

Neutron Plugin

- Speaks OVSDB to configure OVN via its Northbound database
- Goal: only run neutron API server, no agents
- No RabbitMQ, except for notifications (for Ceilometer, or a custom listener)

Current Scale (w/OpenStack)

- 15 HV Deployment:
 - > 250 routers and > 600 VMs
- 90 HV Deployment:
 - > 450 routers and >1500 VMs
- Next step: 300 and 700 HV Deployments

Deployment

Deployment made easy

- No additional daemons to install on hypervisors beyond what comes with OVS
- Minimal host-level configuration
- Rolling upgrades
- Puppet OpenStack now supports OVN
- TripleO support posted for review

Rolling Upgrades

- OVSDB schema is versioned
- Changes to schema will be carefully managed to be backwards compatible
- Allows rolling upgrades
 - Update databases first
 - Roll through upgrades to ovn-controller
- Same strategy OVS itself has been using

Status

Upcoming Release

- Production-ready for next OpenStack release (Newton)
- Features currently in development:
 - HA and multi-threading of ovsdb-server
 - L3 gateway with NAT support
 - IPv6 logical routing
 - Native DHCP and metadata proxy service
 - Address Set for ACL/Security group
 - Routed network support

Resources

- Architecture described in detail in ovn-architecture (5)
- Available in the "master" branch of the main OVS repo:
 - <u>https://github.com/openvswitch/ovs</u>
 - http://openvswitch.org/support/dist-docs/
- Neutron plugin in its own repo:
 - <u>https://git.openstack.org/openstack/networking-ovn.git</u>
- Neutron integration docs, including devstack instructions:
 - http://docs.openstack.org/developer/networking-ovn/
- OVN scale test harness
 - <u>https://github.com/openvswitch/ovn-scale-test.git</u>

How you can help

- Try it! Test it! Scale it! Report bugs! Write Code!
- Core OVN is being developed on ovs-dev mailing list:
 - http://openvswitch.org/pipermail/dev/
 - #openvswitch on Freenode
- Neutron plugin for OVN is being developed here:
 - http://git.openstack.org/openstack/networking-ovn.git
 - openstack-dev mailing list
 - #openstack-neutron-ovn on Freenode

Thank you! Questions?

Justin Pettit (@Justin_D_Pettit) Ben Pfaff (@Ben_Pfaff) Han Zhou (@zhouhanok) Ryan Moats (@regxboi)

Neutron Integration Status

- <u>http://docs.openstack.org/developer/networking-ovn/features.html</u>
- Neutron plugin supports
 - L2 networks
 - Provider Networks
 - Security Groups
 - QoS API
 - Linux Kernel or DPDK datapaths
 - binding:profile for containers in VMs without another overlay
 - binding:profile for connecting vtep gateways to Neutron networks
- Can use OVN native L3 or Neutron L3 agent