
OVN: Open Virtual Network for Open vSwitch

Russell Bryant (@russellbryant) Kyle Mestery (@mestery) Justin Pettit (@Justin_D_Pettit)

Virtual Networking Overview

Provides a logical network abstraction on top of a physical network

What is OVN?

- Open source virtual networking for Open vSwitch (OVS)
- Provides L2/L3 virtual networking
 - Logical switches and routers
 - Security groups
 - L2/L3/L4 ACLs
 - Multiple tunnel overlays (Geneve, STT, and VXLAN)
 - TOR-based and software-based logical-physical gateways
- Work on same platforms as OVS
 - Linux (KVM and Xen)
 - Containers
 - DPDK
 - Hyper-V
- Integration with OpenStack and other CMSs

The Particulars

- Developed by the same community as Open vSwitch
- Vendor-neutral
- Architecture and implementation have all occurred on public mailing lists
- Developed under the Apache license

Goals

- Production-quality
- Straight-forward design
- Scale to thousands of hypervisors (each with many VMs and containers)
- Improved performance and stability over existing plugin

Why OVN is different

- Will not require any additional agents for functionality for simplified deployment and debugging
- Security groups using new in-kernel conntrack integration
 - More secure and faster than other methods
 - "Taking Security Groups to Ludicrous Speed with Open vSwitch" at 9:50 on Thursday
- DPDK-based and hardware-accelerated gateways
 - Leverages new OVS DPDK port
 - Works with switches from Arista, Brocade, Cumulus, Dell, HP, Juniper, and Lenovo

Why OVN is Important to OpenStack

Why OVN is Important to OpenStack

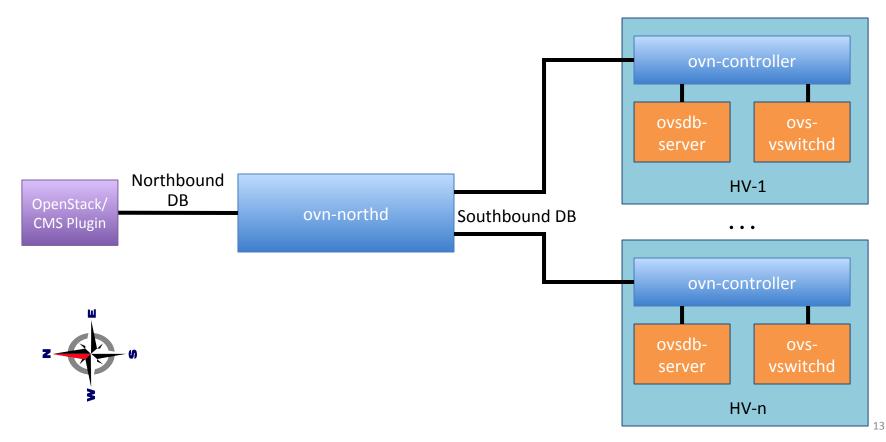
- Neutron's default backend is a custom virtual networking control plane
- Long term, we feel Neutron is best served letting a separate project implement the virtual network control plane

Why OVN is Important to OpenStack

- Migration from OVS backend to OVN is very natural for Neutron
- Just taking advantage of increasing functionality in OVS, which is already in use

OpenStack Neutron Platform

- Neutron evolving to be a platform
 - First step: Plugin decomposition
 - Second step: Bringing the plugin and driver backends under the Neutron tent
 - Third step: Open Source backends mature
- OVN fits into this Neutron Platform model


Neutron Integration with OVN

- ML2 driver for OVN
 - $\circ~$ replaces OVS ML2 driver and Neutron's OVS agent
- Uses Neutron L3 and DHCP agents, but just until OVN support is ready

Designed to Scale

- Configuration coordinated through databases
- Local controller converts logical flow state into physical flow state
- Desired state clearly separated from run-time state
- Grouping techniques reduce Cartesian Product issues

OVN Architecture

The OVN Databases

- ovn-northbound
 - OpenStack/CMS integration point
 - High-level, desired state
 - Logical ports -> logical switches -> logical routers
- ovn-southbound
 - Run-time state
 - Location of logical ports
 - Location of physical endpoints
 - Logical pipeline generated based on configured and run-time state

The Daemons

- ovn-northd
 - Converts from the high-level northbound DB to the run-time southbound DB
 - Generates logical flows based on high-level configuration
- ovn-controller
 - Registers chassis and VIFs to southbound DB
 - Converts logical flows into physical flows (ie, VIF UUIDs to OpenFlow ports)
 - Pushes physical configuration to local OVS instance through OVSDB and OpenFlow

An Example

Chassis (ovn-controller)			
Name	Encap	IP	
HV1	Geneve	10.0.0.10	
HV2	Geneve	10.0.0.11	
	Bindings (ovr	n-controller)	
Name		Chassis	
LP1		HV1	
	Pipeline (o	vn-northd)	
Datapath	Match	Action	
LS1	eth.dst = AA	LP1	
LS1	eth.dst = BB	LP2	

LP1,LP2

eth.dst = <broadcast>

Logica	l_Switch
Name	Ports
LS1	LP1,LP2

Logical_Port		
Name	MAC	
LP1	AA	
LP2	BB	

LS1

LP2 Arrives on HV2

Chassis (ovn-controller)				
Name	En	сар	IP	
HV1	Ge	eneve	10.0.0.10	
HV2	Ge	eneve	10.0.0.11	
Bindings (ovn-controller)				
Name		Ch	assis	
LP1		H∨	'1	
LP2		H∨	2	
	Pipeline (ovn-northd)			
Datapath	Match		Action	

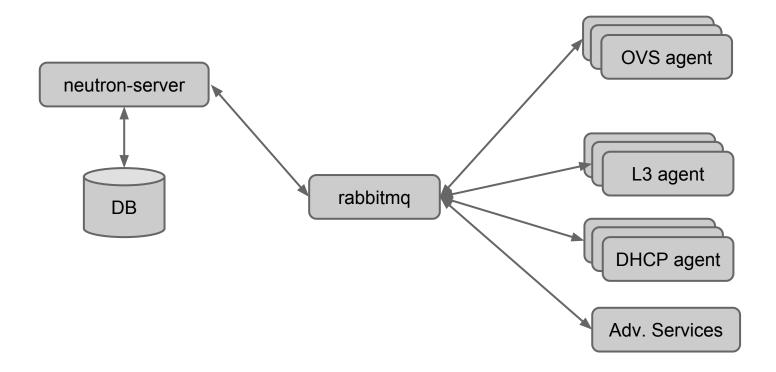
Name	Ports	
LS1	LP1,LP2	
Logical_Port		

Logical_Switch

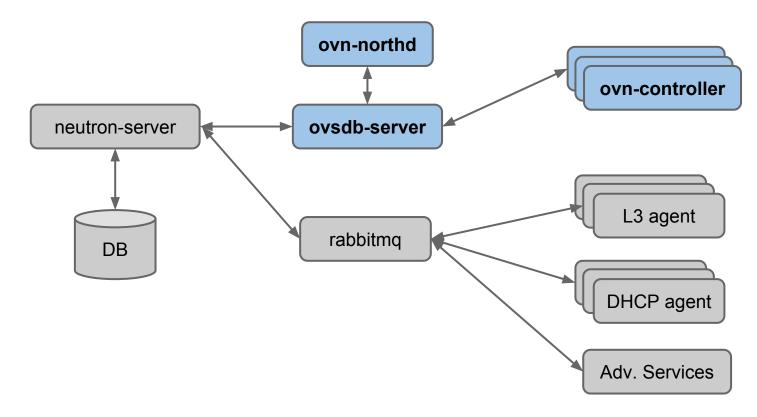
Name	MAC	
LP1	AA	
LP2	BB	

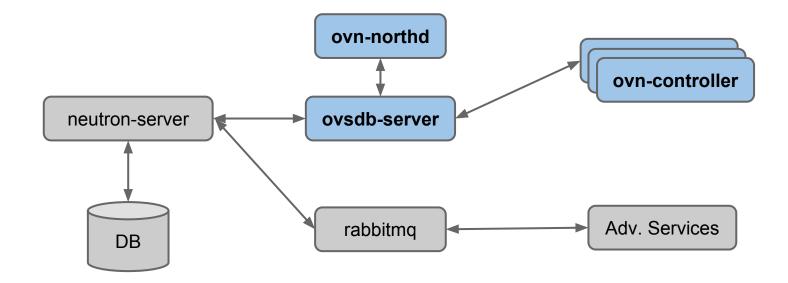
Pipeline (ovn-horthd)			
Datapath	Match	Action	
LS1	eth.dst = AA	LP1	
LS1	eth.dst = BB	LP2	
LS1	eth.dst = <broadcast></broadcast>	LP1,LP2	

Resources


- Architecture described in detail in ovn-architecture (5)
- Configuration is through a number of databases
 - OVN Northbound Interface between CMS and OVN (ovn-nb (5))
 - OVN Southbound Holds the configuration and state of the logical and physical components (ovn-sb (5))
- Available in the "ovn" branch of the main OVS repo:
 - <u>https://github.com/openvswitch/ovs/tree/ovn</u>

Status – The EZ Bake Milestone


- From start of coding to first ping: 6 weeks
- Needs more testing, obviously
- Haven't tried any scale testing
- Features listed on first page should be ready by end of the year
- Expect rapid progress!


Neutron with built-in solution

Neutron with OVN (so far)

Neutron with OVN (later this year)

Trying out OVN

Test #1 - ovs-sandbox

- \$ git clone http://github.com/openvswitch/ovs.git
- \$ cd ovs
- \$ git checkout -b ovn origin/ovn
- \$./boot.sh && ./configure && make
- \$ make sandbox SANDBOXFLAGS="--ovn"

Test #1 - ovs-sandbox

- \$ ovn-nbctl lswitch-add sw0
- \$ ovn-nbctl lport-add sw0 sw0-port1
- \$ ovn-nbctl lport-add sw0 sw0-port2
- \$ ovn-nbctl lport-set-macs sw0-port1 00:00:00:00:00:01
- \$ ovn-nbctl lport-set-macs sw0-port2 00:00:00:00:00:02
- \$ ovs-vsctl add-port br-int lport1 -- \
 set Interface lport1 external_ids:iface-id=sw0-port1
- \$ ovs-vsctl add-port br-int lport2 -- \
 set Interface lport2 external ids:iface-id=sw0-port2

Test #1 - ovs-sandbox

- # Trace OpenFlow flows for a packet from port 1 to 2
- \$ ovs-appctl ofproto/trace br-int \
 in_port=1,dl_src=00:00:00:00:00:01,\
 dl_dst=00:00:00:00:00:02 -generate

Test #2 - Multi-node DevStack

\$ git clone <u>http://git.openstack.org/openstack-</u> dev/devstack.git

\$ git clone <u>http://git.openstack.</u>
org/stackforge/networking-ovn.git

- \$ cd devstack
- ... Get local.conf from networking-ovn/devstack/
- ... local.conf.sample or computenode-local.conf.sample
- \$./stack.sh

More cool stuff that works

- Can be used to create overlay networks for containers across many hosts
- If OVN backs Neutron, containers in VMs can be hooked up to virtual networks managed by Neutron

What's Next for Core OVN

- Security groups using in-kernel conntrack
- ovn-controller that translates to "vtep" schema to enable physical gateways
- OVS-DPDK gateway that uses "vtep" schema
- L3 routing and native IP management
- New test framework that allows local build-time testing with tunnels and arbitrary topologies
- Merge "ovn" into OVS master branch

OVN Neutron Integration Future

- L3 service plugin
- security groups
- get tempest CI job passing
- create multi-node CI job

Longer Term

- DPDK datapath
 - Move beyond the capabilities of the "vtep" schema to support failover, scale-out, and more stateful services
 - Will become a reference for building OVS DPDK applications
- Architecture will allow innovation in the logical network space
 - New approaches to networking and security

How you can help

- Try it! Test it! Write Code!
- Report bugs and try it at scale
- Core OVN is being developed on ovs-dev mailing list:
 - <u>http://openvswitch.org/pipermail/dev/</u>
 - #openvswitch on Freenode
- Neutron plugin for OVN is being developed here:
 - <u>http://git.openstack.org/stackforge/networking-ovn.git</u>
 - openstack-dev mailing list
 - #openstack-neutron-ovn on Freenode

Thank you!

Russell Bryant (@russellbryant) Kyle Mestery (@mestery) Justin Pettit (@Justin_D_Pettit)