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Abstract
We describe the design and implementation of Open

vSwitch, a multi-layer, open source virtual switch for all
major hypervisor platforms. Open vSwitch was designed
de novo for networking in virtual environments, result-
ing in major design departures from traditional software
switching architectures. We detail the advanced flow
classification and caching techniques that Open vSwitch
uses to optimize its operations and conserve hypervisor
resources. We evaluate Open vSwitch performance, draw-
ing from our deployment experiences over the past seven
years of using and improving Open vSwitch.

1 Introduction

Virtualization has changed the way we do computing
over the past 15 years; for instance, many datacenters are
entirely virtualized to provide quick provisioning, spill-
over to the cloud, and improved availability during periods
of disaster recovery. While virtualization is still to reach
all types of workloads, the number of virtual machines
has already exceeded the number of servers and further
virtualization shows no signs of stopping [1].

The rise of server virtualization has brought with it a
fundamental shift in datacenter networking. A new net-
work access layer has emerged in which most network
ports are virtual, not physical [5] – and therefore, the
first hop switch for workloads increasingly often resides
within the hypervisor. In the early days, these hypervi-
sor “vSwitches” were primarily concerned with provid-
ing basic network connectivity. In effect, they simply
mimicked their ToR cousins by extending physical L2
networks to resident virtual machines. As virtualized
workloads proliferated, limits of this approach became
evident: reconfiguring and preparing a physical network
for new workloads slows their provisioning, and coupling
workloads with physical L2 segments severely limits their
mobility and scalability to that of the underlying network.

These pressures resulted in the emergence of network
virtualization [19]. In network virtualization, virtual
switches become the primary provider of network ser-
vices for VMs, leaving physical datacenter networks with
transportation of IP tunneled packets between hypervi-
sors. This approach allows the virtual networks to be
decoupled from their underlying physical networks, and
by leveraging the flexibility of general purpose proces-
sors, virtual switches can provide VMs, their tenants, and
administrators with logical network abstractions, services
and tools identical to dedicated physical networks.

Network virtualization demands a capable virtual
switch – forwarding functionality must be wired on a
per virtual port basis to match logical network abstrac-
tions configured by administrators. Implementation of
these abstractions, across hypervisors, also greatly ben-
efits from fine-grained centralized coordination. This
approach starkly contrasts with early virtual switches for
which a static, mostly hard-coded forwarding pipelines
had been completely sufficient to provide virtual machines
with L2 connectivity to physical networks.

It was this context: the increasing complexity of vir-
tual networking, emergence of network virtualization, and
limitations of existing virtual switches, that allowed Open
vSwitch to quickly gain popularity. Today, on Linux, its
original platform, Open vSwitch works with most hyper-
visors and container systems, including Xen, KVM, and
Docker. Open vSwitch also works “out of the box” on the
FreeBSD and NetBSD operating systems and ports to the
VMware ESXi and Microsoft Hyper-V hypervisors are
underway.

In this paper, we describe the design and implementa-
tion of Open vSwitch [26, 29]. The key elements of its
design, revolve around the performance required by the
production environments in which Open vSwitch is com-
monly deployed, and the programmability demanded by
network virtualization. Unlike traditional network appli-
ances, whether software or hardware, which achieve high
performance through specialization, Open vSwitch, by
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contrast, is designed for flexibility and general-purpose
usage. It must achieve high performance without the lux-
ury of specialization, adapting to differences in platforms
supported, all while sharing resources with the hypervi-
sor and its workloads. Therefore, this paper foremost
concerns this tension – how Open vSwitch obtains high
performance without sacrificing generality.

The remainder of the paper is organized as follows.
Section 2 provides further background about virtualized
environments while Section 3 describes the basic design
of Open vSwitch. Afterward, Sections 4, 5, and 6 describe
how the Open vSwitch design optimizes for the require-
ments of virtualized environments through flow caching,
how caching has wide-reaching implications for the en-
tire design, including its packet classifier, and how Open
vSwitch manages its flow caches. Section 7 then evaluates
the performance of Open vSwitch through classification
and caching micro-benchmarks but also provides a view
of Open vSwitch performance in a multi-tenant datacen-
ter. Before concluding, we discuss ongoing, future and
related work in Section 8.

2 Design Constraints and Rationale

The operating environment of a virtual switch is dras-
tically different from the environment of a traditional
network appliance. Below we briefly discuss constraints
and challenges stemming from these differences, both to
reveal the rationale behind the design choices of Open
vSwitch and highlight what makes it unique.

Resource sharing. The performance goals of tradi-
tional network appliances favor designs that use dedicated
hardware resources to achieve line rate performance in
worst-case conditions. With a virtual switch on the other
hand, resource conservation is critical. Whether or not
the switch can keep up with worst-case line rate is sec-
ondary to maximizing resources available for the primary
function of a hypervisor: running user workloads. That is,
compared to physical environments, networking in virtu-
alized environments optimizes for the common case over
the worst-case. This is not to say worst-case situations
are not important because they do arise in practice. Port
scans, peer-to-peer rendezvous servers, and network mon-
itoring all generate unusual traffic patterns but must be
supported gracefully. This principle led us, e.g., toward
heavy use of flow caching and other forms of caching,
which in common cases (with high hit rates) reduce CPU
usage and increase forwarding rates.

Placement. The placement of virtual switches at the
edge of the network is a source of both simplifications
and complications. Arguably, topological location as a
leaf, as well as sharing fate with the hypervisor and VMs

remove many standard networking problems. The place-
ment complicates scaling, however. It’s not uncommon
for a single virtual switch to have thousands of virtual
switches as its peers in a mesh of point-to-point IP tunnels
between hypervisors. Virtual switches receive forwarding
state updates as VMs boot, migrate, and shut down and
while virtual switches have relatively few (by network-
ing standards) physical network ports directly attached,
changes in remote hypervisors may affect local state. Es-
pecially in larger deployments of thousands (or more)
of hypervisors, the forwarding state may be in constant
flux. The prime example of a design influenced by this
principle discussed in this paper is the Open vSwitch clas-
sification algorithm, which is designed for O(1) updates.

SDN, use cases, and ecosystem. Open vSwitch has
three additional unique requirements that eventually
caused its design to differ from the other virtual switches:

First, Open vSwitch has been an OpenFlow switch
since its inception. It is deliberately not tied to a single-
purpose, tightly vertically integrated network control
stack, but instead is re-programmable through Open-
Flow [27]. This constrasts with a feature datapath model
of other virtual switches [24, 39]: similar to forwarding
ASICs, their packet processing pipelines are fixed. Only
configuration of prearranged features is possible. (The
Hyper-V virtual switch [24] can be extended by adding
binary modules, but ordinarily each module only adds
another single-purpose feature to the datapath.)

The flexibility of OpenFlow was essential in the early
days of SDN but it quickly became evident that advanced
use cases, such as network virtualization, result in long
packet processing pipelines, and thus higher classifica-
tion load than traditionally seen in virtual switches. To
prevent Open vSwitch from consuming more hypervisor
resources than competitive virtual switches, it was forced
to implement flow caching.

Third, unlike any other major virtual switch, Open
vSwitch is open source and multi-platform. In contrast
to closed source virtual switches which all operate in a
single environment, Open vSwitch’s environment is usu-
ally selected by a user who chooses an operating system
distribution and hypervisor. This has forced the Open
vSwitch design to be quite modular and portable.

3 Design

3.1 Overview

In Open vSwitch, two major components direct packet
forwarding. The first, and larger, component is
ovs-vswitchd, a userspace daemon that is essentially
the same from one operating system and operating en-
vironment to another. The other major component, a
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Figure 1: The components and interfaces of Open vSwitch. The
first packet of a flow results in a miss, and the kernel module
directs the packet to the userspace component, which caches the
forwarding decision for subsequent packets into the kernel.

datapath kernel module, is usually written specially for
the host operating system for performance.

Figure 1 depicts how the two main OVS components
work together to forward packets. The datapath module
in the kernel receives the packets first, from a physical
NIC or a VM’s virtual NIC. Either ovs-vswitchd has
instructed the datapath how to handle packets of this type,
or it has not. In the former case, the datapath module
simply follows the instructions, called actions, given by
ovs-vswitchd, which list physical ports or tunnels on
which to transmit the packet. Actions may also specify
packet modifications, packet sampling, or instructions to
drop the packet. In the other case, where the datapath
has not been told what to do with the packet, it delivers
it to ovs-vswitchd. In userspace, ovs-vswitchd deter-
mines how the packet should be handled, then it passes
the packet back to the datapath with the desired handling.
Usually, ovs-vswitchd also tells the datapath to cache
the actions, for handling similar future packets.

In Open vSwitch, flow caching has greatly evolved
over time; the initial datapath was a microflow cache,
essentially caching per transport connection forwarding
decisions. In later versions, the datapath has two layers of
caching: a microflow cache and a secondary layer, called
a megaflow cache, which caches forwarding decisions for
traffic aggregates beyond individual connections. We will
return to the topic of caching in more detail in Section 4.

Open vSwitch is commonly used as an SDN switch,
and the main way to control forwarding is OpenFlow [27].
Through a simple binary protocol, OpenFlow allows a
controller to add, remove, update, monitor, and obtain
statistics on flow tables and their flows, as well as to
divert selected packets to the controller and to inject pack-
ets from the controller into the switch. In Open vSwitch,
ovs-vswitchd receives OpenFlow flow tables from an
SDN controller, matches any packets received from the
datapath module against these OpenFlow tables, gathers
the actions applied, and finally caches the result in the

kernel datapath. This allows the datapath module to re-
main unaware of the particulars of the OpenFlow wire
protocol, further simplifying it. From the OpenFlow con-
troller’s point of view, the caching and separation into
user and kernel components are invisible implementation
details: in the controller’s view, each packet visits a series
of OpenFlow flow tables and the switch finds the highest-
priority flow whose conditions are satisfied by the packet,
and executes its OpenFlow actions.

The flow programming model of Open vSwitch largely
determines the use cases it can support and to this end,
Open vSwitch has many extensions to standard OpenFlow
to accommodate network virtualization. We will discuss
these extensions shortly, but before that, we turn our focus
on the performance critical aspects of this design: packet
classification and the kernel-userspace interface.

3.2 Packet Classification

Algorithmic packet classification is expensive on general
purpose processors, and packet classification in the con-
text of OpenFlow is especially costly because of the gen-
erality of the form of the match, which may test any com-
bination of Ethernet addresses, IPv4 and IPv6 addresses,
TCP and UDP ports, and many other fields, including
packet metadata such as the switch ingress port.

Open vSwitch uses a tuple space search classifier [34]
for all of its packet classification, both kernel and
userspace. To understand how tuple space search works,
assume that all the flows in an Open vSwitch flow ta-
ble matched on the same fields in the same way, e.g., all
flows match the source and destination Ethernet address
but no other fields. A tuple search classifier implements
such a flow table as a single hash table. If the controller
then adds new flows with a different form of match, the
classifier creates a second hash table that hashes on the
fields matched in those flows. (The tuple of a hash table
in a tuple space search classifier is, properly, the set of
fields that form that hash table’s key, but we often refer
to the hash table itself as the tuple, as a kind of useful
shorthand.) With two hash tables, a search must look in
both hash tables. If there are no matches, the flow table
doesn’t contain a match; if there is a match in one hash
table, that flow is the result; if there is a match in both,
then the result is the flow with the higher priority. As the
controller continues to add more flows with new forms of
match, the classifier similarly expands to include a hash
table for each unique match, and a search of the classifier
must look in every hash table.

While the lookup complexity of tuple space search is
far from the state of the art [8, 18, 38], it performs well
with the flow tables we see in practice and has three attrac-
tive properties over decision tree classification algorithms.
First, it supports efficient constant-time updates (an up-
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date translates to a single hash table operation), which
makes it suitable for use with virtualized environments
where a centralized controller may add and remove flows
often, sometimes multiple times per second per hyper-
visor, in response to changes in the whole datacenter.
Second, tuple space search generalizes to an arbitrary
number of packet header fields, without any algorithmic
change. Finally, tuple space search uses memory linear in
the number of flows.

The relative cost of a packet classification is further
amplified by the large number of flow tables that so-
phisticated SDN controllers use. For example, flow ta-
bles installed by the VMware network virtualization con-
troller [19] use a minimum of about 15 table lookups per
packet in its packet processing pipeline. Long pipelines
are driven by two factors: reducing stages through cross-
producting would often significantly increase the flow
table sizes and developer preference to modularize the
pipeline design. Thus, even more important than the per-
formance of a single classifier lookup, it is to reduce the
number of flow table lookups a single packet requires, on
average.

3.3 OpenFlow as a Programming Model

Initially, Open vSwitch focused on a reactive flow pro-
gramming model in which a controller responding to
traffic installs microflows which match every supported
OpenFlow field. This approach is easy to support for soft-
ware switches and controllers alike, and early research
suggested it was sufficient [3]. However, reactive pro-
gramming of microflows soon proved impractical for use
outside of small deployments and Open vSwitch had to
adapt to proactive flow programming to limit its perfor-
mance costs.

In OpenFlow 1.0, a microflow has about 275 bits of in-
formation, so that a flow table for every microflow would
have 2275 or more entries. Thus, proactive population
of flow tables requires support for wildcard matching to
cover the header space of all possible packets. With a
single table this results in a “cross-product problem”: to
vary the treatment of packets according to n1 values of
field A and n2 values of field B, one must install n1×n2
flows in the general case, even if the actions to be taken
based on A and B are independent. Open vSwitch soon
introduced an extension action called resubmit that allows
packets to consult multiple flow tables (or the same table
multiple times), aggregating the resulting actions. This
solves the cross-product problem, since one table can con-
tain n1 flows that consult A and another table n2 flows
that consult B. The resubmit action also enables a form
of programming based on multiway branching based on
the value of one or more fields. Later, OpenFlow vendors
focusing on hardware sought a way to make better use

of the multiple tables consulted in series by forwarding
ASICs, and OpenFlow 1.1 introduced multi-table support.
Open vSwitch adopted the new model but retained its sup-
port for the resubmit action for backward compatibility
and because the new model did not allow for recursion
but only forward progress through a fixed table pipeline.

At this point, a controller could implement programs
in Open vSwitch flow tables that could make decisions
based on packet headers using arbitrary chains of logic,
but they had no access to temporary storage. To solve that
problem, Open vSwitch extended OpenFlow in another
way, by adding meta-data fields called “registers” that
flow tables could match, plus additional actions to mod-
ify and copy them around. With this, for instance, flows
could decide a physical destination early in the pipeline,
then run the packet through packet processing steps identi-
cal regardless of the chosen destination, until sending the
packet, possibly using destination-specific instructions.
As another example, VMware’s NVP network virtual-
ization controller [19] uses registers to keep track of a
packet’s progress through a logical L2 and L3 topology
implemented as “logical datapaths” that it overlays on the
physical OpenFlow pipeline.

OpenFlow is specialized for flow-based control of a
switch. It cannot create or destroy OpenFlow switches,
add or remove ports, configure QoS queues, associate
OpenFlow controller and switches, enable or disable
STP (Spanning Tree Protocol), etc. In Open vSwitch,
this functionality is controlled through a separate com-
ponent, the configuration database. To access the con-
figuration database, an SDN controller may connect to
ovsdb-server over the OVSDB protocol [28], as shown
in Figure 1. In general, in Open vSwitch, OpenFlow con-
trols potentially fast-changing and ephemeral data such
as the flow table, whereas the configuration database con-
tains more durable state.

4 Flow Cache Design

This section describes the design of flow caching in Open
vSwitch and how it evolved to its current state.

4.1 Microflow Caching

In 2007, when the development of the code that would
become Open vSwitch started on Linux, only in-kernel
packet forwarding could realistically achieve good per-
formance, so the initial implementation put all OpenFlow
processing into a kernel module. The module received a
packet from a NIC or VM, classified through the Open-
Flow table (with standard OpenFlow matches and actions),
modified it as necessary, and finally sent it to another port.
This approach soon became impractical because of the
relative difficulty of developing in the kernel and distribut-
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ing and updating kernel modules. It also became clear
that an in-kernel OpenFlow implementation would not be
acceptable as a contribution to upstream Linux, which is
an important requirement for mainstream acceptance for
software with kernel components.

Our solution was to reimplement the kernel module
as a microflow cache in which a single cache entry ex-
act matches with all the packet header fields supported
by OpenFlow. This allowed radical simplification, by
implementing the kernel module as a simple hash table
rather than as a complicated, generic packet classifier,
supporting arbitrary fields and masking. In this design,
cache entries are extremely fine-grained and match at
most packets of a single transport connection: even for a
single transport connection, a change in network path and
hence in IP TTL field would result in a miss, and would
divert a packet to userspace, which consulted the actual
OpenFlow flow table to decide how to forward it. This
implies that the critical performance dimension is flow
setup time, the time that it takes for the kernel to report a
microflow “miss” to userspace and for userspace to reply.

Over multiple Open vSwitch versions, we adopted
several techniques to reduce flow setup time with the
microflow cache. Batching flow setups that arrive to-
gether improved flow setup performance about 24%, for
example, by reducing the average number of system calls
required to set up a given microflow. Eventually, we
also distributed flow setup load over multiple userspace
threads to benefit from multiple CPU cores. Drawing in-
spiration from CuckooSwitch [42], we adopted optimistic
concurrent cuckoo hashing [6] and RCU [23] techniques
to implement nonblocking multiple-reader, single-writer
flow tables.

After general optimizations of this kind customer feed-
back drew us to focus on performance in latency-sensitive
applications, and that required us to reconsider our simple
caching design.

4.2 Megaflow Caching

While the microflow cache works well with most traffic
patterns, it suffers serious performance degradation when
faced with large numbers of short lived connections. In
this case, many packets miss the cache, and must not only
cross the kernel-userspace boundary, but also execute a
long series of expensive packet classifications. While
batching and multithreading can somewhat alleviate this
stress, they are not sufficient to fully support this work-
load.

We replaced the microflow cache with a megaflow
cache. The megaflow cache is a single flow lookup
table that supports generic matching, i.e., it supports
caching forwarding decisions for larger aggregates of
traffic than connections. While it more closely resembles

a generic OpenFlow table than the microflow cache does,
due to its support for arbitrary packet field matching, it
is still strictly simpler and lighter in runtime for two pri-
mary reasons. First, it does not have priorities, which
speeds up packet classification: the in-kernel tuple space
search implementation can terminate as soon as it finds
any match, instead of continuing to look for a higher-
priority match until all the mask-specific hash tables are
inspected. (To avoid ambiguity, userspace installs only
disjoint megaflows, those whose matches do not overlap.)
Second, there is only one megaflow classifier, instead of
a pipeline of them, so userspace installs megaflow en-
tries that collapse together the behavior of all relevant
OpenFlow tables.

The cost of a megaflow lookup is close to the general-
purpose packet classifier, even though it lacks support
for flow priorities. Searching the megaflow classifier re-
quires searching each of its hash tables until a match is
found; and as discussed in Section 3.2, each unique kind
of match in a flow table yields a hash table in the clas-
sifier. Assuming that each hash table is equally likely
to contain a match, matching packets require searching
(n+ 1)/2 tables on average, and non-matching packets
require searching all n. Therefore, for n > 1, which is
usually the case, a classifier-based megaflow search re-
quires more hash table lookups than a microflow cache.
Megaflows by themselves thus yield a trade-off: one must
bet that the per-microflow benefit of avoiding an extra trip
to userspace outweighs the per-packet cost of the extra
hash lookups in form of megaflow lookup.

Open vSwitch addresses the costs of megaflows by
retaining the microflow cache as a first-level cache, con-
sulted before the megaflow cache. This cache is a hash ta-
ble that maps from a microflow to its matching megaflow.
Thus, after the first packet in a microflow passes through
the kernel megaflow table, requiring a search of the kernel
classifier, this exact-match cache allows subsequent pack-
ets in the same microflow to get quickly directed to the
appropriate megaflow. This reduces the cost of megaflows
from per-packet to per-microflow. The exact-match cache
is a true cache in that its activity is not visible to userspace,
other than through its effects on performance.

A megaflow flow table represents an active subset of
the cross-product of all the userspace OpenFlow flow
tables. To avoid the cost of proactive crossproduct com-
putation and to populate the megaflow cache only with
entries relevant for current forwarded traffic, the Open
vSwitch userspace daemon computes the cache entries
incrementally and reactively. As Open vSwitch processes
a packet through userspace flow tables, classifying the
packet at every table, it tracks the packet field bits that
were consulted as part of the classification algorithm. The
generated megaflow must match any field (or part of a
field) whose value was used as part of the decision. For
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example, if the classifier looks at the IP destination field
in any OpenFlow table as part of its pipeline, then the
megaflow cache entry’s condition must match on the des-
tination IP as well. This means that incoming packets
drive the cache population, and as the aggregates of the
traffic evolve, new entries are populated and old entries
removed.

The foregoing discussion glosses over some details.
The basic algorithm, while correct, produces match con-
ditions that are more specific than necessary, which trans-
lates to suboptimal cache hit rates. Section 5, below, de-
scribes how Open vSwitch modifies tuple space search to
yield better megaflows for caching. Afterward, Section 6
addresses cache invalidation.

5 Caching-aware Packet Classification

We now turn our focus on the refinements and improve-
ments we made to the basic tuple search algorithm (sum-
marized in Section 3.2) to improve its suitability for flow
caching.

5.1 Problem

As Open vSwitch userspace processes a packet through
its OpenFlow tables, it tracks the packet field bits that
were consulted as part of the forwarding decision. This
bitwise tracking of packet header fields is very effective in
constructing the megaflow entries with simple OpenFlow
flow tables.

For example, if the OpenFlow table only looks at
Ethernet addresses (as would a flow table based on L2
MAC learning), then the megaflows it generates will
also look only at Ethernet addresses. For example, port
scans (which do not vary Ethernet addresses) will not
cause packets to go to userspace as their L3 and L4 header
fields will be wildcarded resulting in near-ideal megaflow
cache hit rates. On the other hand, if even one flow entry
in the table matches on the TCP destination port, tuple
space search will consider the TCP destination port of
every packet. Then every megaflow will also match on the
TCP destination port, and port scan performance again
drops.

We do not know of an efficient online algorithm to gen-
erate optimal, least specific megaflows, so in development
we have focused our attention on generating increasingly
good approximations. Failing to match a field that must
be included can cause incorrect packet forwarding, which
makes such errors unacceptable, so our approximations
are biased toward matching on more fields than neces-
sary. The following sections describe improvements of
this type that we have integrated into Open vSwitch.

function PRIORITYSORTEDTUPLESEARCH(H)
B← NULL /* Best flow match so far. */
for tuple T in descending order of T.pri max do

if B 6= NULL and B.pri≥ T.pri max then
return B

if T contains a flow F matching H then
if B = NULL or F.pri > B.pri then

B← F
return B

Figure 2: Tuple space search for target packet headers H, with
priority sorting.

5.2 Tuple Priority Sorting

Lookup in a tuple space search classifier ordinarily re-
quires searching every tuple. Even if a search of an early
tuple finds a match, the search must still look in the other
tuples because one of them might contain a matching flow
with a higher priority.

We improved on this by tracking, in each tuple T , the
maximum priority T.pri max of any flow entry in T . We
modified the lookup code to search tuples from greatest
to least maximum priority, so that a search that finds a
matching flow F with priority F.pri can terminate as soon
as it arrives at a tuple whose maximum priority is F.pri
or less, since at that point no better match can be found.
Figure 2 shows the algorithm in detail.

As an example, we examined the OpenFlow table in-
stalled by a production deployment of VMware’s NVP
controller [19]. This table contained 29 tuples. Of those
29 tuples, 26 contained flows of a single priority, which
makes intuitive sense because flows matching a single
tuple tend to share a purpose and therefore a priority.
When searching in descending priority order, one can al-
ways terminate immediately following a successful match
in such a tuple. Considering the other tuples, two con-
tained flows with two unique priorities that were higher
than those in any subsequent tuple, so any match in ei-
ther of these tuples terminated the search. The final tu-
ple contained flows with five unique priorities ranging
from 32767 to 36866; in the worst case, if the lowest
priority flows matched in this tuple, then the remaining
tuples with T.pri max > 32767 (up to 20 tuples based
on this tuple’s location in the sorted list), must also be
searched.

5.3 Staged Lookup

Tuple space search searches each tuple with a hash ta-
ble lookup. In our algorithm to construct the megaflow
matching condition, this hash table lookup means that
the megaflow must match all the bits of fields included
in the tuple, even if the tuple search fails, because every
one of those fields and their bits may have affected the
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lookup result so far. When the tuple matches on a field
that varies often from flow to flow, e.g., the TCP source
port, the generated megaflow is not much more useful
than installing a microflow would be because it will only
match a single TCP stream.

This points to an opportunity for improvement. If one
could search a tuple on a subset of its fields, and determine
with this search that the tuple could not possibly match,
then the generated megaflow would only need to match
on the subset of fields, rather than all the fields in the
tuple.

The tuple implementation as a hash table over all its
fields made such an optimization difficult. One cannot
search a hash table on a subset of its key. We considered
other data structures. A trie would allow a search on any
prefix of fields, but it would also increase the number of
memory accesses required by a successful search from
O(1) to O(n) in the length of the tuple fields. Individual
per-field hash tables had the same drawback. We did not
consider data structures larger than O(n) in the number
of flows in a tuple, because OpenFlow tables can have
hundreds of thousands of flows.

The solution we implemented statically divides fields
into four groups, in decreasing order of traffic granularity:
metadata (e.g., the switch ingress port), L2, L3, and L4.
We changed each tuple from a single hash table to an
array of four hash tables, called stages: one over metadata
fields only, one over metadata and L2 fields, one over
metadata, L2, and L3 fields, and one over all fields. (The
latter is the same as the single hash table in the previous
implementation.) A lookup in a tuple searches each of its
stages in order. If any search turns up no match, then the
overall search of the tuple also fails, and only the fields
included in the stage last searched must be added to the
megaflow match.

This optimization technique would apply to any subsets
of the supported fields, not just the layer-based subsets
we used. We divided fields by protocol layer because,
as a rule of thumb, in TCP/IP, inner layer headers tend
to be more diverse than outer layer headers. At L4, for
example, the TCP source and destination ports change on
a per-connection basis, but in the metadata layer only a
relatively small and static number of ingress ports exist.

Each stage in a tuple includes all of the fields in earlier
stages. We chose this arrangement, although the tech-
nique does not require it, because then hashes could be
computed incrementally from one stage to the next, and
profiling had shown hash computation to be a significant
cost (with or without staging).

With four stages, one might expect the time to search a
tuple to quadruple. Our measurements show that, in fact,
classification speed actually improves slightly in practice
because, when a search terminates at any early stage, the
classifier does not have to compute the full hash of all the

fields covered by the tuple.

This optimization fixes a performance problem ob-
served in production deployments. The NVP controller
uses Open vSwitch to implement multiple isolated logi-
cal datapaths (further interconnected to form logical net-
works). Each logical datapath is independently configured.
Suppose that some logical datapaths are configured with
ACLs that allow or deny traffic based on L4 (e.g., TCP
or UDP) port numbers. Megaflows for traffic on these
logical datapaths must match on the L4 port to enforce the
ACLs. Megaflows for traffic on other logical datapaths
need not and, for performance, should not match on L4
port. Before this optimization, however, all generated
megaflows matched on L4 port because a classifier search
had to pass through a tuple that matched on L4 port. The
optimization allows megaflows for traffic on logical dat-
apaths without L4 ACLs to avoid matching on L4 port,
because the first three (or fewer) stages are enough to
determine that there is no match.

5.4 Prefix Tracking

Flows in OpenFlow often match IPv4 and IPv6 subnets to
implement routing. When all the flows that match on such
a field use the same subnet size, e.g., all match /16 sub-
nets, this works out fine for constructing megaflows. If,
on the other hand, different flows match different subnet
sizes, like any standard IP routing table does, the con-
structed megaflows match the longest subnet prefix, e.g.,
any host route (/32) forces all the megaflows to match full
addresses. Suppose, for example, Open vSwitch is con-
structing a megaflow for a packet addressed to 10.5.6.7. If
flows match subnet 10/8 and host 10.1.2.3/32, one could
safely install a megaflow for 10.5/16 (because 10.5/16
is completely inside 10/8 and does not include 10.1.2.3),
but without additional optimization Open vSwitch installs
10.5.6.7/32. (Our examples use only octet prefixes, e.g., /8,
/16, /24, /32, for clarity, but the implementation and the
pseudocode shown later work in terms of bit prefixes.)

We implemented optimization of prefixes for IPv4 and
IPv6 fields using a trie structure. If a flow table matches
over an IP address, the classifier executes an LPM lookup
for any such field before the tuple space search, both to de-
termine the maximum megaflow prefix length required, as
well as to determine which tuples can be skipped entirely
without affecting correctness.1 As an example, suppose
an OpenFlow table contained flows that matched on some
IPv4 field, as shown:

1This is a slight simplification for improved clarity; the actual imple-
mentation reverts to prefix tracking if staged lookups have concluded to
include an IP field to the match.
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20 /8
10.1 /16
10.2 /16
10.1.3 /24
10.1.4.5/32

These flows correspond to the following trie, in which a
solid circle represents one of the address matches listed
above and a dashed circle indicates a node that is present
only for its children:

root

10 20

1 2

3 4.5

To determine the bits to match, Open vSwitch traverses
the trie from the root down through nodes with labels
matching the corresponding bits in the packet’s IP address.
If traversal reaches a leaf node, then the megaflow need
not match the remainder of the address bits, e.g., in our
example 10.1.3.5 would be installed as 10.1.3/24 and
20.0.5.1 as 20/8. If, on the other hand, traversal stops
due to the bits in the address not matching any of the
corresponding labels in the tree, the megaflow must be
constructed to match up to and including the bits that
could not be found, e.g., 10.3.5.1 must be installed as
10.3/16 and 30.10.5.2 as 30/8.

The trie search result also allows Open vSwitch to skip
searching some tuples. Consider the address 10.1.6.1.
A search of the above trie for this address terminates
at the node labeled 1, failing to find a node to follow
for the address’s third octet. This means that no flow in
the flow table with an IP address match longer than 16
bits matches the packet, so the classifier lookup can skip
searching tuples for the flows listed above with /24 and
/32 prefixes.

Figure 3 gives detailed pseudocode for the prefix match-
ing algorithm. Each node is assumed to have members
bits, the bits in the particular node (at least one bit, ex-
cept that the root node may be empty); left and right, the
node’s children (or NULL); and n rules, the number of
rules in the node (zero if the node is present only for its
children, otherwise nonzero). It returns the number of
bits that must be matched, allowing megaflows to be im-
proved, and a bit-array in which 0-bits designate matching
lengths for tuples that Open vSwitch may skip searching,
as described above.

While this algorithm optimizes longest-prefix match
lookups, it improves megaflows even when no flow ex-
plicitly matches against an IP prefix. To implement a

function TRIESEARCH(value, root)
node← root, prev← NULL
plens← bit-array of len(value) 0-bits
i← 0
while node 6= NULL do

c← 0
while c < len(node.bits) do

if value[i] 6= node.bits[c] then
return (i+1,plens)

c← c+1, i← i+1
if node.n rules > 0 then

plens[i−1]← 1
if i≥ len(value) then

return (i,plens)
prev← node
if value[i] = 0 then

node← node.left
else

node← node.right
if prev 6= NULL and prev has at least one child then

i← i+1
return (i,plens)

Figure 3: Prefix tracking pseudocode. The function searches
for value (e.g., an IP address) in the trie rooted at node root. It
returns the number of bits at the beginning of value that must be
examined to render its matching node unique, and a bit-array of
possible matching lengths. In the pseudocode, x[i] is bit i in x
and len(x) the number of bits in x.

longest prefix match in OpenFlow, the flows with longer
prefix must have higher priorities, which will allow the
tuple priority sorting optimization in Section 5.2 to skip
prefix matching tables after the longest match is found,
but this alone causes megaflows to unwildcard address
bits according to the longest prefix in the table. The main
practical benefit of this algorithm, then, is to prevent poli-
cies (such as a high priority ACL) that are applied to a
specific host from forcing all megaflows to match on a
full IP address. This algorithm allows the megaflow en-
tries only to match with the high order bits sufficient to
differentiate the traffic from the host with ACLs.

We also eventually adopted prefix tracking for L4 trans-
port port numbers. Similar to IP ACLs, this prevents high-
priority ACLs that match specific transport ports (e.g., to
block SMTP) from forcing all megaflows to match the
entire transport port fields, which would again reduce the
megaflow cache to a microflow cache [32].

5.5 Classifier Partitioning

The number of tuple space searches can be further reduced
by skipping tuples that cannot possibly match. OpenFlow
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supports setting and matching metadata fields during a
packet’s trip through the classifier. Open vSwitch parti-
tions the classifier based on a particular metadata field. If
the current value in that field does not match any value in
a particular tuple, the tuple is skipped altogether.

While Open vSwitch does not have a fixed pipeline like
traditional switches, NVP often configures each lookup in
the classifier as a stage in a pipeline. These stages match
on a fixed number of fields, similar to a tuple. By storing
a numeric indicator of the pipeline stage into a specialized
metadata field, NVP provides a hint to the classifier to
efficiently only look at pertinent tuples.

6 Cache Invalidation

The flip side of caching is the complexity of managing the
cache. In Open vSwitch, the cache may require updating
for a number of reasons. Most obviously, the controller
can change the OpenFlow flow table. OpenFlow also
specifies changes that the switch should take on its own in
reaction to various events, e.g., OpenFlow “group” behav-
ior can depend on whether carrier is detected on a network
interface. Reconfiguration that turns features on or off,
adds or removes ports, etc., can affect packet handling.
Protocols for connectivity detection, such as CFM [10]
or BFD [14], or for loop detection and avoidance, e.g.,
(Rapid) Spanning Tree Protocol, can influence behavior.
Finally, some OpenFlow actions and Open vSwitch exten-
sions change behavior based on network state, e.g., based
on MAC learning.

Ideally, Open vSwitch could precisely identify the
megaflows that need to change in response to some event.
For some kinds of events, this is straightforward. For ex-
ample, when the Open vSwitch implementation of MAC
learning detects that a MAC address has moved from one
port to another, the datapath flows that used that MAC
are the ones that need an update. But the generality of
the OpenFlow model makes precise identification difficult
in other cases. One example is adding a new flow to an
OpenFlow table. Any megaflow that matched a flow in
that OpenFlow table whose priority is less than the new
flow’s priority should potentially now exhibit different
behavior, but we do not know how to efficiently (in time
and space) identify precisely those flows.2 The problem is
worsened further by long sequences of OpenFlow flow ta-
ble lookups. We concluded that precision is not practical
in the general case.

Therefore, early versions of Open vSwitch divided
changes that could require the behavior of datapath flows
to change into two groups. For the first group, the changes
whose effects were too broad to precisely identify the

2Header space analysis [16] provides the algebra to identify the flows
but the feasibility of efficient, online analysis (such as in [15]) in this
context remains an open question.

needed changes, Open vSwitch had to examine every dat-
apath flow for possible changes. Each flow had to be
passed through the OpenFlow flow table in the same way
as it was originally constructed, then the generated ac-
tions compared against the ones currently installed in the
datapath. This can be time-consuming if there are many
datapath flows, but we have not observed this to be a
problem in practice, perhaps because there are only large
numbers of datapath flows when the system actually has a
high network load, making it reasonable to use more CPU
on networking. The real problem was that, because Open
vSwitch was single-threaded, the time spent re-examining
all of the datapath flows blocked setting up new flows
for arriving packets that did not match any existing dat-
apath flow. This added high latency to flow setup for
those packets, greatly increased the overall variability of
flow setup latency, and limited the overall flow setup rate.
Through version 2.0, therefore, Open vSwitch limited the
maximum number of cached flows installed in the data-
path to about 1,000, increased to 2,500 following some
optimizations, to minimize these problems.

The second group consisted of changes whose effects
on datapath flows could be narrowed down, such as MAC
learning table changes. Early versions of Open vSwitch
implemented these in an optimized way using a technique
called tags. Each property that, if changed, could require
megaflow updates was given one of these tags. Also,
each megaflow was associated with the tags for all of
the properties on which its actions depended, e.g., if the
actions output the packet to port x because the packet’s
destination MAC was learned to be on that port, then the
megaflow is associated with the tag for that learned fact.
Later, if that MAC learned port changed, Open vSwitch
added the tag to a set of tags that accumulated changes.
In batches, Open vSwitch scanned the megaflow table for
megaflows that had at least one of the changed tags, and
checked whether their actions needed an update.

Over time, as controllers grew more sophisticated and
flow tables more complicated, and as Open vSwitch added
more actions whose behavior changed based on network
state, each datapath flow became marked with more and
more tags. We had implemented tags as Bloom filters [2],
which meant that each additional tag caused more “false
positives” for revalidation, so now most or all flows re-
quired examination whenever any state changed. By
Open vSwitch version 2.0, the effectiveness of tags had
declined so much that to simplify the code Open vSwitch
abandoned them altogether in favor of always revalidating
the entire datapath flow table.

Since tags had been one of the ways we sought to mini-
mize flow setup latency, we now looked for other ways.
In Open vSwitch 2.0, toward that purpose, we divided
userspace into multiple threads. We broke flow setup into
separate threads so that it did not have to wait behind
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revalidation. Datapath flow eviction, however, remained
part of the single main thread and could not keep up with
multiple threads setting up flows. Under heavy flow setup
load, though, the rate at which eviction can occur is criti-
cal, because userspace must be able to delete flows from
the datapath as quickly as it can install new flows, or the
datapath cache will quickly fill up. Therefore, in Open
vSwitch 2.1 we introduced multiple dedicated threads for
cache revalidation, which allowed us to scale up the reval-
idation performance to match the flow setup performance
and to greatly increase the kernel cache maximum size,
to about 200,000 entries. The actual maximum is dynami-
cally adjusted to ensure that total revalidation time stays
under 1 second, to bound the amount of time that a stale
entry can stay in the cache.

Open vSwitch userspace obtains datapath cache statis-
tics by periodically (about once per second) polling the
kernel module for every flow’s packet and byte counters.
The core use of datapath flow statistics is to determine
which datapath flows are useful and should remain in-
stalled in the kernel and which ones are not processing a
significant number of packets and should be evicted. Short
of the table’s maximum size, flows remain in the datapath
until they have been idle for a configurable amount of
time, which now defaults to 10 s. (Above the maximum
size, Open vSwitch drops this idle time to force the table
to shrink.) The threads that periodically poll the kernel for
per flow statistics also use those statistics to implement
OpenFlow’s per-flow packet and byte count statistics and
flow idle timeout features. This means that OpenFlow
statistics are themselves only periodically updated.

The above describes how userspace invalidates the dat-
apath’s megaflow cache. Maintenance of the first-level
microflow cache (discussed in Section 4) is much simpler.
A microflow cache entry is only a hint to the first hash ta-
ble to search in the general tuple space search. Therefore,
a stale microflow cache entry is detected and corrected
the first time a packet matches it. The microflow cache
has a fixed maximum size, with new microflows replac-
ing old ones, so there is no need to periodically flush old
entries. We use a pseudo-random replacement policy, for
simplicity, and have found it to be effective in practice.

7 Evaluation

The following sections examine Open vSwitch perfor-
mance in production and in microbenchmarks.

7.1 Performance in Production

We examined 24 hours of Open vSwitch performance data
from the hypervisors in a large, commercial multi-tenant
data center operated by Rackspace. Our data set contains
statistics polled every 10 minutes from over 1,000 hy-
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Figure 4: Min/mean/max megaflow flow counts observed.

pervisors running Open vSwitch to serve mixed tenant
workloads in network virtualization setting.

Cache sizes. The number of active megaflows gives
us an indication about practical megaflow cache sizes
Open vSwitch handles. In Figure 4, we show the CDF
for minimum, mean and maximum counts during the
observation period. The plots show that small megaflow
caches are sufficient in practice: 50% of the hypervisors
had mean flow counts of 107 or less. The 99th percentile
of the maximum flows was still just 7,033 flows. For the
hypervisors in this environment, Open vSwitch userspace
can maintain a sufficiently large kernel cache. (With the
latest Open vSwitch mainstream version, the kernel flow
limit is set to 200,000 entries.)

Cache hit rates. Figure 5 shows the effectiveness of
caching. The solid line plots the overall cache hit rate
across each of the 10-minute measurement intervals
across the entire population of hypervisors. The over-
all cache hit rate was 97.7%. The dotted line includes just
the 25% of the measurement periods in which the fewest
packets were forwarded, in which the caching was less
effective than overall, achieving a 74.7% hit rate. Intu-
itively, caching is less effective (and unimportant) when
there is little to cache. Open vSwitch caching is most
effective when it is most useful: when there is a great
deal of traffic to cache. The dashed line, which includes
just the 25% of the measurement periods in which the
most packets were forwarded, demonstrates this: during
these periods, the hit rate rises slightly above the overall
average to 98.0%.

The vast majority of the hypervisors in this data center
do not experience high volume traffic from their work-
loads. Figure 6 depicts this: 99% of the hypervisors see
fewer than 79,000 packets/s to hit their caches (and fewer
than 1500 flow setups/s to enter userspace due to misses).

CPU usage. Our statistics gathering process cannot sep-
arate Open vSwitch kernel load from the rest of the kernel
load, so we focus on Open vSwitch userspace. As we
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Figure 5: Hit rates during all (solid), busiest
(dashed), and slowest (dotted) periods.
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Figure 6: Cache hit (solid) and miss
(dashed) packet counts.
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Figure 7: Userspace daemon CPU load as
a function of misses/s entering userspace.

will show in Section 7.2, the megaflow CPU usage itself
is in line with Linux bridging and less of a concern. In
Open vSwitch, the userspace load is largely due to the
misses in kernel and Figure 7 depicts this. (Userspace
CPU load can exceed 100% due to multithreading.) We
observe that 80% of the hypervisors averaged 5% CPU
or less on ovs-vswitchd, which has been our traditional
goal. Over 50% of hypervisors used 2% CPU or less.

Outliers. The upper right corner of Figure 7 depicts a
number of hypervisors using large amounts of CPU to pro-
cess many misses in userspace. We individually examined
the six most extreme cases, where Open vSwitch averaged
over 100% CPU over the 24 hour period. We found that
all of these hypervisors exhibited a previously unknown
bug in the implementation of prefix tracking, such that
flows that match on an ICMP type or code caused all TCP
flows to match on the entire TCP source or destination
port, respectively. We believe we have fixed this bug in
Open vSwitch 2.3, but the data center was not upgraded
in time to verify in production.

7.2 Caching Microbenchmarks

We ran microbenchmarks with a simple flow table de-
signed to compactly demonstrate the benefits of the
caching-aware packet classification algorithm. We used
the following OpenFlow flows, from highest to lowest pri-
ority. We omit the actions because they are not significant
for the discussion:

arp (1)
ip ip dst=11.1.1.1/16 (2)
tcp ip dst=9.1.1.1 tcp src=10 tcp dst=10 (3)
ip ip dst=9.1.1.1/24 (4)

With this table, with no caching-aware packet classifi-
cation, any TCP packet will always generate a megaflow
that matches on TCP source and destination ports, be-
cause flow #3 matches on those fields. With priority
sorting (Section 5.2), packets that match flow #2 can omit
matching on TCP ports, because flow #3 is never consid-
ered. With staged lookup (Section 5.3), IP packets not

Optimizations ktps Flows Masks CPU%
Megaflows disabled 37 1,051,884 1 45/ 40
No optimizations 56 905,758 3 37/ 40
Priority sorting only 57 794,124 4 39/ 45
Prefix tracking only 95 13 10 0/ 15
Staged lookup only 115 14 13 0/ 15
All optimizations 117 15 14 0/ 20

Table 1: Performance testing results for classifier optimizations.
Each row reports the measured number of Netperf TCP CRR

transactions per second, in thousands, along with the number of
kernel flows, kernel masks, and user and kernel CPU usage.

Microflows Optimizations ktps Tuples/pkt CPU%
Enabled Enabled 120 1.68 0/ 20
Disabled Enabled 92 3.21 0/ 18
Enabled Disabled 56 1.29 38/ 40
Disabled Disabled 56 2.45 40/ 42

Table 2: Effects of microflow cache. Each row reports the
measured number of Netperf TCP CRR transactions per second,
in thousands, along with the average number of tuples searched
by each packet and user and kernel CPU usage.

destined to 9.1.1.1 never need to match on TCP ports,
because flow #3 is identified as non-matching after con-
sidering only the IP destination address. Finally, address
prefix tracking (Section 5.4) allows megaflows to ignore
some of the bits in IP destination addresses even though
flow #3 matches on the entire address.
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Figure 8: Forwarding rate in terms of the average number of
megaflow tuples searched, with the microflow cache disabled.
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Cache layer performance. We measured first the base-
line performance of each Open vSwitch cache layer. In all
following tests, Open vSwitch ran on a Linux server with
two 8-core, 2.0 GHz Xeon processors and two Intel 10-Gb
NICs. To generate many connections, we used Netperf’s
TCP CRR test [25], which repeatedly establishes a TCP
connection, sends and receives one byte of traffic, and
disconnects. The results are reported in transactions per
second (tps). Netperf only makes one connection attempt
at a time, so we ran 400 Netperf sessions in parallel and
reported the sum.

To measure the performance of packet processing in
Open vSwitch userspace, we configured ovs-vswitchd

to disable megaflow caching, by setting up only microflow
entries in the datapath. As shown in Table 1, this yielded
37 ktps in the TCP CRR test, with over one million kernel
flow entries, and used about 1 core of CPU time.

To quantify the throughput of the megaflow cache by
itself, we re-enabled megaflow caching, then disabled the
kernel’s microflow cache. Table 2 shows that disabling
the microflow cache reduces TCP CRR performance from
120 to 92 ktps when classifier optimizations are enabled.
(When classifier optimizations are disabled, disabling the
microflow cache has little effect because it is overshad-
owed by the increased number of trips to userspace.)

Figure 8 plots packet forwarding performance for long-
lived flows as a function of the average number of tuples
searched, with the kernel microflow cache disabled. In
the same scenarios, with the microflow cache enabled, we
measured packet forwarding performance of long-lived
flows to be approximately 10.6 Mpps, independent of the
number of tuples in the kernel classifier. Even searching
only 5 tuples on average, the microflow cache improves
performance by 1.5 Mpps, clearly demonstrating its value.
To put these numbers in perspective in terms of raw hash
lookup performance, we benchmarked our tuple space
classifier in isolation: with a randomly generated table of
half a million flow entries, the implementation is able to
do roughly 6.8M hash lookups/s, on a single core – which
translates to 680,000 classifications per second with 10
tuples.

Classifier optimization benefit. We measured the ben-
efit of our classifier optimizations. Table 1 shows the
improvement from individual optimizations and all of
the optimizations together. Each optimization reduces
the number of kernel flows needed to run the test. Each
kernel flow corresponds to one trip between the kernel
and userspace, so each reduction in flows also reduces
userspace CPU time used. As can be seen from the ta-
ble, as the number of kernel flows (Flows) declines, the
number of tuples in the kernel flow table (Masks) in-
creases, increasing the cost of kernel classification, but
the measured reduction in kernel CPU time and increase

in TCP CRR shows that this is more than offset by the
microflow cache and by fewer trips to userspace. The
TCP CRR test is highly sensitive to latency, demonstrating
that latency decreases as well.

Comparison to in-kernel switch. We compared Open
vSwitch to the Linux bridge, an Ethernet switch imple-
mented entirely inside the Linux kernel. In the sim-
plest configuration, the two switches achieved identi-
cal throughput (18.8 Gbps) and similar TCP CRR con-
nection rates (696 ktps for Open vSwitch, 688 for the
Linux bridge), although Open vSwitch used more CPU
(161% vs. 48%). However, when we added one flow to
Open vSwitch to drop STP BPDU packets and a similar
iptables rule to the Linux bridge, Open vSwitch per-
formance and CPU usage remained constant whereas the
Linux bridge connection rate dropped to 512 ktps and
its CPU usage increased over 26-fold to 1,279%. This
is because the built-in kernel functions have per-packet
overhead, whereas Open vSwitch’s overhead is generally
fixed per-megaflow. We expect enabling other features,
such as routing and a firewall, would similarly add CPU
load.

8 Ongoing, Future, and Related Work

We now briefly discuss our current and planned efforts to
improve Open vSwitch, and briefly cover related work.

8.1 Stateful Packet Processing

OpenFlow does not accommodate stateful packet opera-
tions, and thus, per-connection or per-packet forwarding
state requires the controller to become involved. For this
purpose, Open vSwitch allows running on-hypervisor “lo-
cal controllers” in addition to a remote, primary controller.
Because a local controller is an arbitrary program, it can
maintain any amount of state across the packets that Open
vSwitch sends it.

NVP includes, for example, a local controller that im-
plements a stateful L3 daemon responsible for sending
and processing ARPs. The L3 daemon populates an L3
ARP cache into a dedicated OpenFlow table (not man-
aged by the primary controller) for quick forwarding of
common case (packets with a known IP to MAC bind-
ing). The L3 daemon only receives packets resulting in an
ARP cache miss and emits any necessary ARP requests to
remote L3 daemons based on the packets received from
Open vSwitch. While the connectivity between the local
controller and Open vSwitch is local, the performance
overhead is significant: a received packet traverses first
from kernel to userspace daemon from which it traverses
across a local socket (again via kernel) to a separate pro-
cess.
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For performance critical stateful packet operations,
Open vSwitch relies on kernel networking facilities.
For instance, a solid IP tunneling implementation re-
quires (stateful) IP reassembly support. In a similar man-
ner, transport connection tracking is a first practical re-
quirement after basic L2/L3 networking; even most basic
firewall security policies call for stateful filtering. Open-
Flow is flexible enough to implement static ACLs but not
stateful ones. For this, there’s an ongoing effort to provide
a new OpenFlow action that invokes a kernel module that
provides metadata which the subsequent OpenFlow tables
may use the connection state (new, established, related)
in their forwarding decision. This “connection tracking”
is the same technique used in many dedicated firewall ap-
pliances. Transitioning between kernel networking stack
and kernel datapath module incurs overhead but avoids
the duplication of functionality, critical in upstreaming
kernel changes.

8.2 Userspace Networking

Improving the virtual switch performance through
userspace networking is a timely topic due to NFV [9,22].
In this model, packets are passed directly from the NIC
to VM with minimal intervention by the hypervisor
userspace/kernel, typically through shared memory be-
tween NIC, virtual switch, and VMs. To this end, there is
an ongoing effort to add both DPDK [11] and netmap [30]
support to Open vSwitch. Early tests indicate the Open
vSwitch caching architecture in this context is similarly
beneficial to kernel flow cache.

An alternative to DPDK that some in the Linux commu-
nity are investigating is to reduce the overhead of going
through the kernel. In particular, the SKB structure that
stores packets in the Linux kernel is several cache lines
large, contrary to the compact representation in DPDK
and netmap. We expect the Linux community will make
significant improvements in this regard.

8.3 Hardware Offloading

Over time, NICs have added hardware offloads for com-
monly needed functions that use excessive host CPU time.
Some of these features, such as TCP checksum and seg-
mentation offload, have proven very effective over time.
Open vSwitch takes advantage of these offloads, and most
others, which are just as relevant to virtualized environ-
ments. Specialized hardware offloads for virtualized envi-
ronments have proven more elusive, though.

Offloading virtual switching entirely to hardware is a
recurring theme (see, e.g., [12]). This yields high per-
formance, but at the cost of flexibility: a simple fixed
function hardware switch effectively replaces the soft-
ware virtual switch with no ability for the hypervisor to

extend its functionality. The offload approach we cur-
rently find most promising is to enable NICs to accelerate
kernel flow classification. The Flow Director feature on
some Intel NICs has already been shown to be useful for
classifying packets to separate queues [36]. Enhancing
this feature simply to report the matching rule, instead
of selecting the queue, would make it useful as such for
megaflow classification. Even if the TCAM size were
limited, or if the TCAM did not support all the fields that
the datapath uses, it could speed up software classification
by reducing the number of hash table searches – without
limiting the flexibility since the actions would still take
place in the host CPU.

8.4 Related Work

Flow caching. The benefits of flow caching generally
have been argued by many in the community [4, 13, 17,
31, 41]. Lee et al. [21] describes how to augment the
limited capacity of a hardware switch’s flow table using a
software flow cache, but does not mention problems with
flows of different forms or priorities. CacheFlow [13],
like Open vSwitch, caches a set of OpenFlow flows in a
fast path, but CacheFlow requires the fast path to directly
implement all the OpenFlow actions and requires building
a full flow dependency graph in advance.

Packet classification. Classification is a well-studied
problem [37]. Many classification algorithms only work
with static sets of flows, or have expensive incremental
update procedures, making them unsuitable for dynamic
OpenFlow flow tables [7, 8, 33, 38, 40]. Some classifiers
require memory that is quadratic or exponential in the
number of flows [8, 20, 35]. Other classifiers work only
with 2 to 5 fields [35], whereas OpenFlow 1.0 has 12 fields
and later versions have more. (The effective number of
fields is much higher with classifiers that must treat each
bit of a bitwise matchable field as an individual field.)

9 Conclusion

We described the design and implementation of Open
vSwitch, an open source, multi-platform OpenFlow vir-
tual switch. Open vSwitch has simple origins but its
performance has been gradually optimized to match the
requirements of multi-tenant datacenter workloads, which
has necessitated a more complex design. Given its op-
erating environment, we anticipate no change of course
but expect its design only to become more distinct from
traditional network appliances over time.
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