
Han Zhou
NVIDIA
OVSCON 2021

Scale OVN
To The Next Level

2

Agenda

● Scale challenges overview
● Trade IP mobility for scalability
● Logical flow tagging
● ACL optimizations
● Thoughts on incremental processing

3

OVN Control Plane

Central

NB-DB

Northd

SB-DB

OVN-Controller

OVS
Host

Host ...

CMS

Virtual Network
Abstractions

Logical Flows,
Port Bindings,
Encaps

OpenFlows

● Bottlenecks
○ Northd

■ Processes large size of logical topology
○ SB-DB

■ JSON-RPC sessions for a large number of
hosts

○ OVN-Controller
■ Processes and generates huge amount of

flows
● Metrics

○ Latency
○ Throughput
○ CPU/Memory

● Factors
○ Data size
○ Number of nodes
○ Change rate

Host

Scale Challenges Overview

4

Trade IP Mobility for Scalability
Pin Logical Switches to Nodes

5

Best Scenario
Lots of small isolated tenants

● Full-mesh connectivity within tenant.
● No connectivity between tenants.
● Each node cares about a small portion of

the whole logical topology.
○ => A small portion of SB DB data

need to be processed by each
ovn-controller.

HOWEVER ...

6

Reality
When there are very big tenants

● A big tenant’s workloads present on
most nodes.

● Each node need to know almost the
whole topology.

○ => Each ovn-controller processing
almost the whole SB DB data.

7

Data required by each node
IP-location decoupled (any-ip-anywhere)

● On the source node - O(p), p = #LSPs
○ Logical flows that find the dest LSP
○ Port binding that tells the physical

location of the dest LSP (the dest node)

● On the destination node
○ Egress logical flows of the last hop LS
○ Port binding of the local VIFs

LS LR LS...

on the source node

on the dest node

LS

Node-A Node-B

8

Trade IP mobility for scalability
Pin logical switches to nodes

● Node-based subnet allocation
○ Contained in node-level logical switches
○ IP mobility at IP-block level only

● Between the nodes: routing - O(n), n = #nodes
○ Subnet A -> Node A (LS-A)
○ Subnet B -> Node B (LS-B)
○ ...

● Within a node: switching - O(v), v = #VIFs
○ IP1 -> MAC1 -> LSP1 -> VIF1
○ IP2 -> MAC2 -> LSP2 -> VIF2
○ ...

LS LR LS

on the source node

on the dest node

Node-A Node-B

9

Distributed Gateway Port
Use DGPs to pin logical switches to nodes

● Distributed Gateway Port
○ A LRP with gateway-chassis set
○ Originally implemented for L3 Gateway
○ Non-distributed part: chassis-redirect-port

■ Redirected packets to a node for
further pipelines

● Enhancements
○ Don’t flood-fill local-DPs across DGP

boundary (when distributed NAT is not
used)

○ Support multiple DGPs per LR

LS LS

on the source node

on the dest node

LS

LR
LS

LS

LS LR

LS

LS

LS

LS

LR LS

May need a better name for DGP:
Distributed Chassis-redirect Port

Node-A Node-B

Subnet A -> DGP-A
Subnet B -> DGP-B
...

Ingress Egress

redirect

LR

gateway-chassis
=Node-B

LR

10

OVN-Kubernetes (before)

● Node-level subnets and LSes connected by
a single shared cluster-level LR

● Data required by each node:
○ Datapaths

■ Node LSes x N
■ Node local GR and LS-ext
■ Cluster router, LS-join

○ Port-bindings
■ All LSPs

● “ovn-monitor-all” always set to true
○ Otherwise SB CPU too high, because

the monitor condition is too big.

Full-mesh cluster pod network

LS

Cluster
Router

LS

LS

LS

GR GR

GR GR

LS-join

LS-ext LS-ext

LS-ext LS-ext

11

OVN-Kubernetes (now)

● Node-level subnets and LSes connected by
a single shared cluster-level LR

● Data required by each node:
○ Datapaths

■ Node LSes x 1
■ Node local GR and LS-ext
■ Cluster router, LS-join

○ Port-bindings
■ All LSPs Node local LSPs

● “ovn-monitor-all” can be set to false
○ Each node only cares about a small

portion of the SB data.

Use DGPs to pin logical switches to nodes

LS

Cluster
Router

LS

LS

LS

GR GR

GR GR

LS-join

LS-ext LS-ext

LS-ext LS-ext

12

Benefits

● Faster ovn-controller recompute
○ Restarts (ovn-controller, OVS)
○ Node add/deletions
○ Other none I-P changes

● Faster I-P
○ Less DPs and PBs to process
○ Only one local DP for each DP group

● Conditional monitoring
○ SB server: higher cost for filtering but lower cost for data transferring
○ ovn-controller: lower IDL cost

● Memory savings on nodes
○ Less OVS flows to maintain in both ovn-controller and OVS
○ Less SB IDL data with conditional monitoring

13

Scale Test Result

● Environment:
○ CPU: Intel i9-7920X@2.90GHz
○ OVN Commit ID: 22298fd37908

● Scale:
○ 1000 nodes, 10 LSPs per node
○ 2 PGs, each with 2000 LSPs
○ 5 pair of stateful ACLs: PG1 ⇔ PG2

● Result:
○ > 10x faster
○ 80% less memory

L
S

Cluster
Router

L
S

L
S

L
S

GR GR

GR GR

LS-join

LS-ext LS-ext

LS-ext LS-ext

14

Further Improvement

● Still one flow per-LSP left on every node:
○ ARP resolving for LSPs happens at LR pipeline

● Goal:
○ O(n), n = # nodes

● Solution:
○ Move ARP resolving for LSPs to LS pipeline

Remove all non-local LSP related flows

15

Logical Flow Tagging
Provide metadata for processing

16

Logical Flows Revisit
Pros & Cons

Central

NB-DB

Northd

SB-DB

OVN-Controller

OVS
Host

Host ...

CMS

Virtual Network
Abstractions

Logical Flows,
Port Bindings,
Encaps

OpenFlows

● Pros:
○ An intermediate representation that is easier to

understand and debug
○ Centralized processing for common computation

● Cons:
○ An extra layer of processing cost
○ Strings (unstructured) - metadata lost

Host

17

Central

NB + SB

OVN-Controller

OVS
Host

Host ...

CMS

Virtual Network
Abstractions,
Port Bindings,
Encaps

OpenFlows

● Moving northd functions to every ovn-controller
● Almost rewriting OVN
● String parsing still needed for

○ ACL
○ QoS
○ Logical_Router_Policy

● No obvious benefit with “pin logical switches to
nodes”

Host

Remove the Logical Flow Layer
Needs more evaluation ...

18

Logical Flow Tagging

● A new column in Logical_Flow table: tags
○ Key-value pairs providing help for ovn-controller to

process logical flows more efficiently.

● The first use-case: in_out_port
○ key=in_out_port

■ For ingress pipeline, value=inport
■ For egress pipeline, value=outport

○ Filter out non-local logical flows before parsing.
○ Test result with full-mesh topology =>

● Limitation
○ Useful only if northd can provide the information.
○ E.g. doesn’t help for ACL flows - northd doesn’t

parse the match string in ACLs.

Provide metadata for processing

19

ACL Optimizations
For an efficient distributed firewall

20

ACL Scaling Problem

● An ingress policy:
○ Allow IPs in address-set A to access LSPs in port-group B

● Direction: to-lport
● Match: outport == @B && ip4 && ip4.src == $A
● Action: allow-related
● M + N + 1 OpenFlow rules (M = # local VIFs of PG_B, N = # IPs in AS_A)

ACLs with Address-sets and Port-groups

…

AS: A
…

PG: B

● ip, reg<outport>=p1: actions=conjunction(<id>, 1/2)
● ip, reg<outport>=p2: actions=conjunction(<id>, 1/2)
● …
● ip, reg<outport>=pM: actions=conjunction(<id>, 1/2)

● Scale problem
○ N can be huge, but the Address-set change handling is naive.
○ VMs/Containers come & go => AS_A changes =>
○ Regenerate all the M + N + 1 OVS flows.

● ip, nw_src=ip1: actions=conjunction(<id>, 2/2)
● ip, nw_src=ip2: actions=conjunction(<id>, 2/2)
● …
● ip, nw_src=ipN: actions=conjunction(<id>, 2/2)

● ip, conj_id=<id>: actions=<the real action>

21

 Consistent Conjunction ID Generation

● Before
○ Reprocessing a logical-flow uses a new conjunction ID (unless logical-flow cache is enabled)
○ => All the M + N + 1 flows are changed
○ => all deleted and reinstalled to OVS

■ Control plane latency
■ Dataplane impact - megaflow cache churns

● Now
○ Logical-flow uuid based consistent conjunction ID allocation algorithm
○ => Conjunction ID doesn’t change in 99.999…% cases
○ => Only the flows corresponding to the added/deleted IPs of the address-set are updated to OVS

Avoid unnecessary OVS flow-mod

● ip, nw_src=ip1: actions=conjunction(<id>, 2/2)
● ip, nw_src=ip2: actions=conjunction(<id>, 2/2)
● …
● ip, nw_src=ipOld: actions=conjunction(<id>, 2/2)
● …
● ip, nw_src=ipNew: actions=conjunction(<id>, 2/2)
● …
● ip, nw_src=ipN: actions=conjunction(<id>, 2/2)

22

 Fine-grained Address-set I-P (WIP)

● Why
○ Cost of reprocessing a single ACL logical flow can be high, when AS size is big
○ When churn rate is high, ovn-controller will be busy processing AS changes

● Goal
○ Only OpenFlow rules related to the changed AS members are computed

● How
○ Track address-set information throughout the logical flow compiling
○ Maintain the mapping between each IP of address-sets to the desired OpenFlow rule(s) generated

● Challenges
○ Logical flow match format is flexible (unstructured)
○ Expression parsing is complex

■ Initial string parse -> annotate with symbol table -> simplify -> normalize -> generate OpenFlow matches
○ With v.s. Without conjunction
○ Shared conjunction flows between logical flows

Avoid unnecessary flow regeneration

● ip, nw_src=ip1: actions=conjunction(<id>, 2/2)
● ip, nw_src=ip2: actions=conjunction(<id>, 2/2)
● …
● ip, nw_src=ipOld: actions=conjunction(<id>, 2/2)
● …
● ip, nw_src=ipNew: actions=conjunction(<id>, 2/2)
● …
● ip, nw_src=ipN: actions=conjunction(<id>, 2/2)

23

Incremental Processing
v.s. Recompute

24

 Incremental Processing v.s. Recompute

Incremental
Processing

Recompute

Latency - small change

Latency - medium change (e.g.
~50% of the total data)

? ?

Latency - big change (e.g. ~90%
of the total data)

Throughput (req/s) - batch
processing *

* Keep pushing changes to the system without waiting for completion of
earlier changes, until a large batch of changes has been pushed.

25

Incremental Processing

● Great for latency sensitive system with small changes
○ Not necessarily good for systems that tolerates high latency but requires high throughput with batch jobs

■ E.g. “Must finish 10k jobs within 1 minute.”

● The efficiency of a single change processing in I-P is critical for throughput when change rate is high
● It is valuable to have the capability to fall-back to recompute for very big changes

○ Examples:
■ Flow computing: when most part of the input (logical topology) has changed
■ Flow installation: when tracked flow-changes are close to the total number of flows

● Rather doing less than doing it wrong

Some thoughts

