<3

NVIDIA

Scale OVN
To The Next Level

Han Zhou
NVIDIA
OVSCON 2021

Agenda

Scale challenges overview

Trade IP mobility for scalability
Logical flow tagging

ACL optimizations

Thoughts on incremental processing

2 <ANVIDIA.

Bottlenecks
Northd

OVN Control Plane

Scale Challenges Overview

Processes large size of logical topology Virtual Network

SB-DB

Abstractions

JSON-RPC sessions for a large number of

hosts
OVN-Controller

Logical Flows,

Processes and generates huge amount of Port Bindings,

flows
Metrics
Latency
Throughput
CPU/Memory
Factors
Data size

Number of nodes

Change rate

Encaps

OpenFlows

3

<ANVIDIA.

Trade IP Mobility for Scalability

IIIIIII

Best Scenario

Lots of small isolated tenants

Full-mesh connectivity within tenant.

No connectivity between tenants.

Each node cares about a small portion of

the whole logical topology.
=> A small portion of SB DB data
need to be processed by each
ovn-controller.

HOWEVER ...

5

<ANVIDIA.

Reality

When there are very big tenants

A big tenant’s workloads present on

most nodes.
Each node need to know almost the : : : : : : : :
whole topology.

=> Each ovn-controller processing
almost the whole SB DB data.

6 <ANVIDIA.

Data required by each node

IP-location decoupled (any-ip-anywhere)

I

On the source node - O(p), p = #LSPs Node-A
Logical flows that find the dest LSP 'Y %
Port binding that tells the physical
location of the dest LSP (the dest node) ® O

B

On the destination node
Egress logical flows of the last hop LS
Port binding of the local VIFs

N\

J

on the source node

on the dest node

Node-B

0 @
-0 ©

7

<ANVIDIA.

Trade IP mobility for scalability

Pin logical switches to nodes

on the dest node
Node-based subnet allocation Node-A
Contained in node-level logical switches ®
IP mobility at IP-block level only ® -

A
Between the nodes: routing - O(n), n = #nodes ’

Subnet A -> Node A (LS-A) on the source node
Subnet B -> Node B (LS-B)

Node-B

Withiﬁ.:a node: switching - O(v), v = #VIFs
IP1 -> MAC1 -> LSP1 -> VIF1
IP2 -> MAC2 -> LSP2 -> VIF2

8

<ANVIDIA.

Distributed Gateway Port

Use DGPs to pin logical switches to nodes

on the dest node

Distributed Gateway Port
A LRP with gateway-chassis set
Originally implemented for L3 Gateway
Non-distributed part: chassis-redirect-port
Redirected packets to a node for gateway-chassis
further pipelines N A _Node B

~

on the source node

Enhancements
Don’t flood-fill local-DPs across DGP
boundary (when distributed NAT is not
used)
Support multiple DGPs per LR

May need a better name for DGP:
Distributed Chassis-redirect Port

9

<ANVIDIA.

OVN-Kubernetes (before)

Full-mesh cluster pod network

Node-level subnets and LSes connected by
a single shared cluster-level LR
Data required by each node:
Datapaths
Node LSes x N
Node local GR and LS-ext
Cluster router, LS-join
Port-bindings
All LSPs
“ovn-monitor-all” always set to true
Otherwise SB CPU too high, because
the monitor condition is too big.

10

<ANVIDIA.

OVN-Kubernetes (now)

Use DGPs to pin logical switches to nodes

Node-level subnets and LSes connected by
a single shared cluster-level LR
Data required by each node:
Datapaths
Node LSes x 1
Node local GR and LS-ext
Cluster router, LS-join
Port-bindings
AHESPs Node local LSPs
“ovn-monitor-all” can be set to false
Each node only cares about a small
portion of the SB data.

1" <ANVIDIA.

Benefits

Faster ovn-controller recompute
Restarts (ovn-controller, OVS)
Node add/deletions
Other none I-P changes
Faster I-P
Less DPs and PBs to process
Only one local DP for each DP group
Conditional monitoring
SB server: higher cost for filtering but lower cost for data transferring
ovn-controller: lower IDL cost
Memory savings on nodes
Less OVS flows to maintain in both ovn-controller and OVS
Less SB IDL data with conditional monitoring

12 <ANVIDIA.

Scale Test Result

Environment:
CPU: Intel 19-7920X@2.90GHz
OVN Commit ID: 22298fd37908

Scale: B Atter [l Before
1000 nodes, 10 LSPs per node —
2 PGs, each with 2000 LSPs 163464
5 pair of stateful ACLs: PG1 & PG2

Result: - it 77269

> 10x faster
80% less memory

50%

25%

0%

QVS flows per node ovn-controller MEM Recompute (sec) Restart (sec)

13 <ANVIDIA.

Further Improvement

Remove all non-local LSP related flows

Still one flow per-LSP left on every node:
ARP resolving for LSPs happens at LR pipeline

Goal:
O(n), n = # nodes
Solution:
Move ARP resolving for LSPs to LS pipeline

14 <ANVIDIA.

Logical Flow Tagging

Provide metadata for processing

Logical Flows Revisit

Pros & Cons
CMS
Pros: RSSTT SO
An intermediate representation that is easier to & '
understand and debug Virtual Network - : - - -
Centralized processing for common computation Abstractions :
Cons:
An extra layer of processing cost :
Strings (unstructured) - metadata lost Logical Flows, - :--:
Port Bindings, S TN
Encaps
OVN-Controller
OpenFlows - | ::--- ovs

16 <ANVIDIA.

Remove the Logical Flow Layer

Needs more evaluation ...

Moving northd functions to every ovn-controller
Almost rewriting OVN

String parsing still needed for cms
ACL T
QOS. ' Central
nglcal_Route'r_Po.llcy“ ' ' . Virtual Network - : - - -

No obvious benefit with “pin logical switches to Abstractions, ,-

HOdGS” Port Bindings, e NG 4

Encaps

QOVN-Controller

OpenFlows - | ::--- ovs

17

<ANVIDIA.

Logical Flow Tagging

Provide metadata for processing

A new column in Logical_Flow table: tags

Key-value pairs providing help for ovn-controller to
process logical flows more efficiently.

The first use-case: in_out_port oA o, e, e 11
key:i n_ou t _port B Without Tagging [l With Tagging

3

For ingress pipeline, value=inport

For egress pipeline, value=outport
Filter out non-local logical flows before parsing.
Test result with full-mesh topology =>

Limitation

Useful only if northd can provide the information.
E.g. doesn’t help for ACL flows - northd doesn’t
parse the match string in ACLs.

2

1

latency (sec)

LSPs per chassis

18 <ANVIDIA.

ACL Optimizations

For an efficient distributed firewall

19 <A NvIDL, A

ACL Scaling Problem

ACLs with Address-sets and Port-groups

An ingress policy:
Allow IPs in address-set A to access LSPs in port-group B

Direction: to-lport N
Match: outport == @B && ip4 && ip4.src == SA
Action: allow-related
M + N + 1 OpenFlow rules (M = # local VIFs of PG_B, N = # IPs in AS_A)
.. as: A
ip, reg<outport>=p1: actions=conjunction(<id>, 1/2)
ip, reg<outport>=p2: actions=conjunction(<id>, 1/2)
............... P fesoper R sctonmeomnetone 1 PG: B <
..)

ip, nw_src=ip1: actions=conjunction(<id>, 2/2)
ip, nw_src=ip2: actions=conjunction(<id>, 2/2)

ip, nw_src=ipN: actions=conjunction(<id>, 2/2)

Scale problem
N can be huge, but the Address-set change handling is naive.
VMs/Containers come & go => AS_A changes =>
Regenerate all the M + N + 1 OVS flows.

20 <ANVIDIA.

Before

Now

Consistent Conjunction ID Generation

Avoid unnecessary OVS flow-mod

Reprocessing a logical-flow uses a new conjunction ID (unless logical-flow cache is enabled)
=> All the M + N + 1 flows are changed
=> all deleted and reinstalled to OVS

Control plane latency

Dataplane impact - megaflow cache churns

Logical-flow uuid based consistent conjunction ID allocation algorithm
=> Conjunction ID doesn’t change in 99.999...% cases
=> Only the flows corresponding to the added/deleted IPs of the address-set are updated to OVS

ip, nw_src=ip1: actions=conjunction(<id>, 2/2)
ip, nw_src=ip2: actions=conjunction(<id>, 2/2)

e e . . 212
ip, nw_src=ipNew: actions=conjunction(<id>, 2/2)

ip, nw_src=ipN: actions=conjunction(<id>, 2/2)

21

<ANVIDIA.

Fine-grained Address-set |-P (WIP)

Avoid unnecessary flow regeneration

Why
Cost of reprocessing a single ACL logical flow can be high, when AS size is big
When churn rate is high, ovn-controller will be busy processing AS changes

Goal

ip, nw_src=ip1: actions=conjunction(<id>, 2/2)
ip, nw_src=ip2: actions=conjunction(<id>, 2/2)

e e . . 212
ip, nw_src=ipNew: actions=conjunction(<id>, 2/2)

ip, nw_src=ipN: actions=conjunction(<id>, 2/2)

How
Track address-set information throughout the logical flow compiling
Maintain the mapping between each IP of address-sets to the desired OpenFlow rule(s) generated

Challenges
Logical flow match format is flexible (unstructured)
Expression parsing is complex
Initial string parse -> annotate with symbol table -> simplify -> normalize -> generate OpenFlow matches
With v.s. Without conjunction

Shared conjunction flows between logical flows
22 <ANVIDIA.

Incremental Processing

IIIIIII

Incremental Processing v.s. Recompute

Incremental
Processing
Latency - small change @
Latency - medium change (e.g. ?
~50% of the total data)
Latency - big change (e.g. ~90% ‘
of the total data)
Throughput (req/s) - batch .

processing *

* Keep pushing changes to the system without waiting for completion of
earlier changes, until a large batch of changes has been pushed.

Recompute

NVIDIA.

Incremental Processing
Some thoughts

Great for latency sensitive system with small changes
Not necessarily good for systems that tolerates high latency but requires high throughput with batch jobs
E.g. “Must finish 10k jobs within 1 minute.”
The efficiency of a single change processing in I-P is critical for throughput when change rate is high
It is valuable to have the capability to fall-back to recompute for very big changes
Examples:
Flow computing: when most part of the input (logical topology) has changed
Flow installation: when tracked flow-changes are close to the total number of flows

Rather doing less than doing it wrong

25

<ANVIDIA.

NVIDIA.

