
PARALLEL HARDWARE OFFLOADS
OVSCON 2021 - GAETAN RIVET



AGENDA

Hardware offloads in userland OVS

Parallel offload architecture

Implementation notes

Results



HARDWARE OFFLOADS IN USERLAND OVS



OVS

HARDWARE OFFLOADS IN USERLAND OVS
OVS: multi-layer switch

PMD thread

EMC
Datapath
Classifier

ofproto
Classifier

NIC

Miss Miss

Hardware
Classifier

RX

TX

Increasing processing time

Lookup: hashmap

No wildcard

Lookup: TSS

Wildcard support

1 table

Wildcard support

4 sub-tables



OVS

HARDWARE OFFLOADS IN USERLAND OVS
OVS: multi-layer switch

PMD thread

Datapath
Classifier

ofproto
Classifier

NIC

Miss

Hardware
Classifier

RX

TX

Increasing processing time

Lookup: TSS

Wildcard support

Wildcard support

4 sub-tables



OVS

PMD thread

HARDWARE OFFLOADS IN USERLAND OVS
OVS: multi-layer switch

Datapath
Classifier

ofproto
Classifier

NIC

Miss

Hardware
Classifier

Lookup: TSS

Wildcard support

Wildcard support

4 sub-tablesSync



OVS

HARDWARE OFFLOADS IN USERLAND OVS
Thread model: DPDK ports

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Modify / Delete

Insert Insert Insert



OVS

HARDWARE OFFLOADS IN USERLAND OVS
Thread model: DPDK ports

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread

HW-offload
handle table

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Offload queue

Insert / Modify / Delete

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

Mark-to-flow 
map

Megaflow-to-
mark map



OVS

HARDWARE OFFLOADS IN USERLAND OVS
Thread model: DPDK ports

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread

HW-offload
handle table

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Mark-to-flow 
map

Megaflow-to-
mark map

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 l
o
c
kp

o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

Queue lock

Offload queue

Insert / Modify / Delete

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier



Parallel offload architecture



OVS

Relevant metrics

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread

HW-offload
handle table

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Mark-to-flow 
map

Megaflow-to-
mark map

Offload queue

Insert / Modify / Delete

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

A

B

Optimization is done on 2 metrics:

• Classifier sync latency.

From the moment the DPCLS has been 
updated until the hardware received the 
update (A → B).

• Offload queue depth.

Number of offload updates waiting in the 
queue.

PARALLEL OFFLOAD ARCHITECTURE



OVS

PARALLEL OFFLOAD ARCHITECTURE
Current state

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread

HW-offload
handle table

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Mark-to-flow 
map

Megaflow-to-
mark map

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 l
o
c
kp

o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

Queue lock

Offload queue

Insert / Modify / Delete

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier



OVS

PARALLEL OFFLOAD ARCHITECTURE
Locking changes 1

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread

HW-offload
handle table

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Mark-to-flow 
map

Megaflow-to-
mark map

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 l
o
c
kp

o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

p
o
rt

 
lo

c
k

MPSC Offload queue

Insert / Modify / Delete

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier



OVS

PARALLEL OFFLOAD ARCHITECTURE
Locking changes 2

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread

HW-offload
handle table

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Mark-to-flow 
map

Megaflow-to-
mark map

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 l
o
c
k

MPSC Offload queue

Insert / Modify / Delete

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier



OVS

PARALLEL OFFLOAD INFRASTRUCTURE
Locking changes 3

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload thread

HW-offload
handle table

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Mark-to-flow 
map

Megaflow-to-
mark map

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 R

W
-l

o
c
k
: 

rd
lo

c
k

MPSC Offload queue

Insert / Modify / Delete

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier



OVS

PARALLEL OFFLOAD ARCHITECTURE
Hw-offload thread pool

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload 1

M-to-f map

Mf-to-M map

MPSC queue

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Hw-offload 2

M-to-f map

Mf-to-M map

MPSC queue

Hw-offload K

M-to-f map

Mf-to-M map

MPSC queue

HW-offload
handle table

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 R

W
-l

o
c
k
: 

rd
lo

c
k

Scalable
Mark pool

hash(UFID) % K

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

lock



OVS

PARALLEL OFFLOAD ARCHITECTURE
Per-port offload maps

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload 1

M-to-f map

Mf-to-M map

MPSC queue

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Hw-offload 2

M-to-f map

Mf-to-M map

MPSC queue

Hw-offload K

M-to-f map

Mf-to-M map

MPSC queue

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 R

W
-l

o
c
k
: 

rd
lo

c
k

Scalable 
Mark pool

hash(UFID) % K

HW-offload
handle table

HW-offload
handle table

HW-offload
handle table

HW-offload
handle table

lock

lock

lock

lock

P
o
rt

-w
is

e

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier



IMPLEMENTATION NOTES



IMPLEMENTATION NOTES

▪ Fast Mark pool

▪ Mark allocation uses an ID pool that has pathological behavior with non-sequential ID freeing.

▪ This ID pool also scales poorly with additional threads.

▪ It cannot be fixed without removing features used by other modules, that mark allocation does not require.

→ A new allocator is proposed: ‘id-fpool’. Functionalities are reduced to the essentials. It is faster and scales better.



IMPLEMENTATION NOTES
Faster mark pool: add

Lower is better.

Intel® Xeon® CPU E5-2650 v3 @ 2.30 GHz



IMPLEMENTATION NOTES
Faster mark pool: del

Lower is better.

Intel® Xeon® CPU E5-2650 v3 @ 2.30 GHz



IMPLEMENTATION NOTES
Faster mark pool: mix

Lower is better.

Intel® Xeon® CPU E5-2650 v3 @ 2.30 GHz



IMPLEMENTATION NOTES
Faster mark pool: rand

Lower is better.

Intel® Xeon® CPU E5-2650 v3 @ 2.30 GHz



IMPLEMENTATION NOTES

▪ Fast Mark pool

▪ Mark allocation uses an ID pool that has pathological behavior with non-sequential ID freeing.

▪ This ID pool also scales poorly with additional threads.

▪ It cannot be fixed without removing features used by other modules, that mark allocation does not require.

→ A new allocator is proposed: ‘id-fpool’. Functionalities are reduced to the essentials. It is faster and scales better.

▪ MPSC queue

▪ Thread model is heterogeneous: Affined (PMD) and non-affined threads are all using the queue.
Unfair lock (spinlock) is thus not usable.
Fair lock (mutex) does not scale (+ worsen CPU coherency traffic).

▪ Multi-Producer, Single-Consumer case is common.

→ A fast MPSC queue would be a useful addition to OvS.



MPSC QUEUE
Producer side

Lower is better.

Intel® Xeon® CPU E5-2650 v3 @ 2.30 GHz



RESULTS



RESULTS
Setup

▪ Measures made on NVIDIA BlueField-2 DPU cores (Low power ARMv8.1 @ 500MHz).

▪ 4 PMD threads, 3 revalidators (default).

▪ Traffic made to trigger continuous updates.

▪ Latency is measured with an Exponential Moving Average, configured with a factor of 0.019802.

▪ It gives the same ‘center of mass’ as a Simple Moving Average with a window of 100 entries.

▪ Will respond quicker to recent changes, to show correlation with the offload queue depth.



RESULTS



RESULTS



RESULTS



RESULTS



RESULTS



POSSIBLE IMPROVEMENTS

▪ Per-port offload table sharding.

Divide each port offload table into K smaller tables, for K hw-offload threads.
It would remove the last contention in the HW offload management.



OVS

PARALLEL OFFLOAD ARCHITECTURE
Per-port offload maps

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload 1

M-to-f map

Mf-to-M map

MPSC queue

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Hw-offload 2

M-to-f map

Mf-to-M map

MPSC queue

Hw-offload K

M-to-f map

Mf-to-M map

MPSC queue

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 R

W
-l

o
c
k
: 

rd
lo

c
k

Scalable 
Mark pool

hash(UFID) % K

HW-offload
handle table

HW-offload
handle table

HW-offload
handle table

HW-offload
handle table

lock

lock

lock

lock

P
o
rt

-w
is

e

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier



OVS

PARALLEL OFFLOAD ARCHITECTURE
Per-port offload maps

0:PF

1:PF

2:VF-rep

3:VF-rep

Hw-offload 1

M-to-f map

Mf-to-M map

MPSC queue

Core-wise

Revalidator M

CPU 1 CPU 2 CPU N

Hw-offload 2

M-to-f map

Mf-to-M map

MPSC queue

Hw-offload K

M-to-f map

Mf-to-M map

MPSC queue

Scalable 
Mark pool

hash(UFID) % K

P
o
rt

-w
is

e

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

PMD thread

Datapath
Classifier

D
a
ta

p
a
th

 p
o
rt

 m
a
p
 R

W
-l

o
c
k
: 

rd
lo

c
k



POSSIBLE IMPROVEMENTS

▪ Per-port offload table sharding.

Divide each port offload table into K smaller tables, for K hw-offload threads.
It would remove the last contention in the HW offload management.

▪ Improve memory efficiency.

Offloads data structure have been reorganized to allow parallel disjoint access.
Beyond parallelism, memory access could be more cache-conscious:

- spatially: reduce match footprint in offloads by avoiding a full description.
Alternatively, offload match could be directly written by offload initiator (PMD / revalidator).

- temporally: batch offload updates.




