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Relevant metrics
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Optimization is done on 2 metrics:

• Classifier sync latency.

From the moment the DPCLS has been 
updated until the hardware received the 
update (A → B).

• Offload queue depth.

Number of offload updates waiting in the 
queue.
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IMPLEMENTATION NOTES

▪ Fast Mark pool

▪ Mark allocation uses an ID pool that has pathological behavior with non-sequential ID freeing.

▪ This ID pool also scales poorly with additional threads.

▪ It cannot be fixed without removing features used by other modules, that mark allocation does not require.

→ A new allocator is proposed: ‘id-fpool’. Functionalities are reduced to the essentials. It is faster and scales better.
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IMPLEMENTATION NOTES

▪ Fast Mark pool

▪ Mark allocation uses an ID pool that has pathological behavior with non-sequential ID freeing.

▪ This ID pool also scales poorly with additional threads.

▪ It cannot be fixed without removing features used by other modules, that mark allocation does not require.

→ A new allocator is proposed: ‘id-fpool’. Functionalities are reduced to the essentials. It is faster and scales better.

▪ MPSC queue

▪ Thread model is heterogeneous: Affined (PMD) and non-affined threads are all using the queue.
Unfair lock (spinlock) is thus not usable.
Fair lock (mutex) does not scale (+ worsen CPU coherency traffic).

▪ Multi-Producer, Single-Consumer case is common.

→ A fast MPSC queue would be a useful addition to OvS.



MPSC QUEUE
Producer side

Lower is better.

Intel® Xeon® CPU E5-2650 v3 @ 2.30 GHz
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RESULTS
Setup

▪ Measures made on NVIDIA BlueField-2 DPU cores (Low power ARMv8.1 @ 500MHz).

▪ 4 PMD threads, 3 revalidators (default).

▪ Traffic made to trigger continuous updates.

▪ Latency is measured with an Exponential Moving Average, configured with a factor of 0.019802.

▪ It gives the same ‘center of mass’ as a Simple Moving Average with a window of 100 entries.

▪ Will respond quicker to recent changes, to show correlation with the offload queue depth.
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POSSIBLE IMPROVEMENTS

▪ Per-port offload table sharding.

Divide each port offload table into K smaller tables, for K hw-offload threads.
It would remove the last contention in the HW offload management.
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POSSIBLE IMPROVEMENTS

▪ Per-port offload table sharding.

Divide each port offload table into K smaller tables, for K hw-offload threads.
It would remove the last contention in the HW offload management.

▪ Improve memory efficiency.

Offloads data structure have been reorganized to allow parallel disjoint access.
Beyond parallelism, memory access could be more cache-conscious:

- spatially: reduce match footprint in offloads by avoiding a full description.
Alternatively, offload match could be directly written by offload initiator (PMD / revalidator).

- temporally: batch offload updates.




