
Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

OVSDB: Performance and Scale Journey '21

Ilya Maximets, Red Hat

 December 7-8, 2021

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

ovsdb-server

storageraft
follower

OVSDB: Standalone vs Clustered

ovsdb-server

 storage file

client
1.transact

4.reply
3.write

2.execute

ovsdb-server

 storage raft
leader

client

1.transact

8.reply

3.write

2.execute

ovsdb-server

storage

6.read

7.replay

6.read

7.replay

6.read

7.replay

4.append request

5.append reply

4.append request
5.append reply

raft
follower

2

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

HVnHV1

OVN Architecture Overview

Northbound DB
(ovsdb-server)

Southbound DB
(ovsdb-server)

ovn-northd

ovn-controller

ovs-vswitchd ovsdb-server

ovn-controller

ovs-vswitchd ovsdb-server..
.

CMS

ovn-nbctl

ovn-sbctl

3

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

List of OVSDB performance changes

1. v2.13.5 - Baseline
2. 2ccd66f59 | ovsdb: Use column diffs for ovsdb and raft log entries.
3. 748010ff3 | json: Optimize string serialization.
4. 0de882954 | raft: Don't keep full json objects in memory if no longer needed.
5. 43e66fc27 | ovsdb: monitor: Store serialized json in a json cache.
6. b2712d026 | ovsdb: transaction: Use diffs for strong reference counting.
7. 51946d222 | ovsdb-data: Optimize union of sets.
8. bb12b6317 | ovsdb-data: Optimize subtraction of sets.
9. 32b51326e | ovsdb-data: Add function to apply diff in-place.

10. 429b114c5 | ovsdb-data: Deduplicate string atoms.
11. 4dbff9f0a | ovsdb: transaction: Incremental reassessment of weak refs.
12. 317b1bfd7 | ovsdb: Don't let transaction history grow larger than the database.
13. dec429168 | ovsdb-data: Consolidate ovsdb atom and json strings.
14. 79953a57e | stream-ssl: Avoid unnecessary memory copies on send.

4

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test setup and what the numbers mean

● ovsdb-server is running with OVN_Northbound schema in clustered or standalone mode.

● Test is sending transactions by invoking ovsdb-client application in leader-only mode.

● ovsdb-clients are invoked from 50 shells in parallel.

● Another 100 clients are monitoring the database receiving all the updates.

● Test is trying to perform operations that are similar to what ovn-kubernetes may do:

○ Port addition. Transaction with 3 operations (~750 B of data):

■ Create a row in a Logical_Switch_Port table

■ Add this row to one of the 100 Logical Switches

■ Add the address to the address set

○ Addition of a Load Balancer. Transaction with 2 operations (~420 B of data):

■ Create a row in a Load_Balancer table

■ Add this row to the Load Balancer Group

● 100 logical switches, 1 load balancer group and 1 address set are pre-created.

● Test is trying to consecutively add 30.000 LSPs (300 per LS) and 30.000 LBs, then remove.

120.000 ovsdb-client invocations total.

5

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test setup and what the numbers mean

The metric for the test results is “ovsdb-client invocations per second”.

Why not “transactions per second”?

● Too many things are happening beside the actual transaction:

○ ovsdb-client process needs time to spawn/terminate/parse arguments.

○ ovsdb-client needs to connect to the server and request the Database

record from the _Server database (including 14KB OVN_Northbound schema).

○ By receiving the Database record, ovsdb-client may decide to re-connect to

another server (leader-only).

○ ovsdb-client may decide to backoff in case of a connection failure (for the test

backoff is limited by 0.5 seconds).

6

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Baseline (v2.13.5) problem

● Standalone:

○ Rate: 40.9 invocations per second.

○ DB file size: 53 GB

○ RSS: 87 MB

● Clustered:

○ Rate: DNF (did not finish)

○ Projected DB file size at the end: ~70GB per server.

○ RSS: 30 GB per process at the moment it got killed (~ ⅓ of the test).

Problem: Fast growing change log in the database file and the RAFT log.

7

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Transaction to add a port

How transactions look like in the database file:

"Logical_Switch":{"<r0>":{"ports":["uuid"," <p0>"]}}

"Logical_Switch":{"<r0>":{"ports":["set",[["uuid"," <p0>"],["uuid","<p1>"]]]}}

"Logical_Switch":{"<r0>":{"ports":["set",[["uuid"," <p0>"],["uuid","<p1>"],["uuid","<p2>"]]]}}

 ...

"Logical_Switch":{"<r0>":{"ports":["set",[["uuid"," <p0>"],...,["uuid"," <p300>"]]]}}

Each file transaction contains the whole new set of values for the changed column.
Same for the RAFT log that is kept in memory → huge RSS of ovsdb-server process.

8

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Baseline problem: Solution

OVS 2.15 supports storing only the difference between the old and new versions of a row:

#2 2ccd66f59 | ovsdb: Use column diffs for ovsdb and raft log entries.

Database file format changed in OVS 2.15, and it’s not backward compatible.

For the upgrade/downgrade instructions see ovsdb(7):
https://docs.openvswitch.org/en/latest/ref/ovsdb.7

9

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results v2.15.2 (column diff)

● Standalone:

○ Rate: 87.9 invocations per second. (was: 40.9)

○ DB file size: 51 MB (was: 53 GB)

○ RSS: 79 MB

● Clustered:

○ Rate: 13.7 invocations per second (was: v2.13.5 didn’t finish the test)

○ DB file size: ~70 MB per server (was: ~70 GB).

○ RSS: 972 MB (was: > 30 GB)

Conclusion:

 Test was able to finish with a reasonable memory usage and 1000x smaller database files.

 Standalone database test finished with 2x better performance result.

10

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

JSON-related optimizations

● Simple algorithmic change for the JSON serialization process that allows
better compiler optimizations:
#3 748010ff3 | json: Optimize string serialization.

● Memory consumption optimization that allows to not store bulky JSON
objects (lots of small memory pieces), but a single serialized string instead:
#4 0de882954 | raft: Don't keep full json objects in memory if no
 longer needed.

● Pre-serialization of monitor replies to avoid doing the same thing for each
ovsdb client:
#5 43e66fc27 | ovsdb: monitor: Store serialized json in a json cache.

11

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

JSON-related optimizations

● Since ovsdb-server and any other OVS-based application uses serialization of JSON
objects for basically every interaction with other processes, this should have a
noticeable performance impact.

● Unfortunately, current test framework doesn’t add a lot of strings to the database.
It’s mostly UUIDs. So benefits from some patches are not very visible.

12

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Alternative test: 100K

Same test as before, but instead of adding ports or load balancers, test sends
huge transactions, containing mostly strings.

This is a better approximation of OVN_Southbound database, because:
● ovn-northd usually sends fairly big transactions
● OVN_Southbound database contains a lot of strings, e.g. logical flow

matches and actions.

What is actually going on:

● Each transaction in this test creates one port-group with 500 external ids.

● Each external id’s key and value are 100B strings.

● Transaction size is about 100K bytes long.

● Creating 5.000 port groups to not waste a disk space. (500 MB)

13

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

JSON-related: 100K test results

● Standalone:

○ #2: 35.7 invocations per second. RSS: 688 MB

○ #5: 85.9 invocations per second. RSS: 688 MB

● Clustered:

○ #2: 71.1 invocations per second. RSS: 1739 MB

○ #5: 85.8 invocations per second. RSS: 1667 MB

 Conclusion:

1. 20% performance improvement in the clustered case and 140% improvement in the

standalone case.

2. Performance improvement mostly caused by the patch #5.

3. RSS improvement is still not very visible, because database compactions are not

happening during the test, hence we can’t save on not storing a huge database

snapshot in memory.

14

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Strong reference counting

● In order to check referential integrity, each row has a reference counter.

● If value in a column changed, ovsdb need to decrease the counter for a row

referenced by an old value and increase for the row referenced by a new value.

● What if the column contains a set of references?

Old column value:

New column value:

a b c d e f g h i j

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

a b c f g h i j k l

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

15

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Strong reference counting

● In order to check referential integrity, each row has a reference counter.

● If value in a column changed, ovsdb need to decrease the counter for a row

referenced by an old value and increase for the row referenced by a new value.

● What if the column contains a set of references?

Old column value:

New column value:

● What if that set has 30.000 values?

a b c d e f g h i j

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

a b c f g h i j k l

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

16

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Strong reference counting: Solution

● Get the difference between sets and update only changed values!

Old column value:

New column value:

● Fortunately, while processing transactions we either already know the difference or able

to calculate it fairly fast.

#6 b2712d026 | ovsdb: transaction: Use diffs for strong reference counting.

a b c d e f g h i j

-1 -1

a b c f g h i j k l

+1 +1

17

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results (strong refs, ports+LBs)

● Standalone:

○ #5: 90.7 invocations per second. RSS: 79 MB

○ #6: 95.7 invocations per second. RSS: 78 MB

● Clustered:

○ #5: 11.7 invocations per second. RSS: 916 MB

○ #6: 9.8 invocations per second. RSS: 803 MB

 Analysis:

1. 5% performance improvement in the standalone case

2. 16% performance drop in the clustered case.???

18

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results (strong refs, ports+LBs)

● Standalone:

○ #5: 90.7 invocations per second. RSS: 79 MB

○ #6: 95.7 invocations per second. RSS: 78 MB

● Clustered:

○ #5: 11.7 invocations per second. RSS: 916 MB

○ #6: 9.8 invocations per second. RSS: 803 MB

 Analysis:

1. 5% performance improvement in the standalone case.

2. 16% performance drop in the clustered case.???

Reason: patches wasn’t applied in the order they were developed. At this point in
the git history calculation of the column difference is a bit heavy and clustered
database uses this path twice, hence gets the performance hit. Next patches will
make these operations way cheaper, so #6 will shine in their performance results.

19

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Optimized operations on sets

● Algorithmic changes to make set operations almost incremental:
#7 51946d222 | ovsdb-data: Optimize union of sets.

#8 bb12b6317 | ovsdb-data: Optimize subtraction of sets.

#9 32b51326e | ovsdb-data: Add function to apply diff in-place.

● #7 and #8 allows to get rid of extra qsort() of the set and separate copies of
all the elements.

● #9 is very similar and also allows to avoid extra memory copy while applying
the column diff read from the database file/raft log by applying the diff to
the existing row without constructing a new one.

● Detailed description of the algorithmic changes could be found in the
commit messages.

20

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results (set operations)

● Standalone:

○ #6: 95.7 invocations per second. RSS: 78 MB

○ #9: 127.3 invocations per second. RSS: 79 MB

● Clustered:

○ #6: 9.8 invocations per second. RSS: 803 MB

○ #9: 52.1 invocations per second. RSS: 403 MB

 Analysis:

1. 33% performance improvement in the standalone case.

2. 431% performance and 50% memory consumption improvement in the clustered case.

21

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Deduplication of strings

● OVSDB copies database rows and columns all the time during transaction

processing.

● This includes copying strings stored in the database back and forth.

● Let’s use a reference-counted data structure instead:

#10 429b114c5 | ovsdb-data: Deduplicate string atoms.

● This change also allows to compare strings very fast as most of the time
OVSDB actually compares strings that it previously copied, so the simple
pointer comparison will confirm that they are identical.

22

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results (string deduplication)

● Standalone:

○ #9: 127.3 invocations per second. RSS: 79 MB

○ #10: 157.6 invocations per second. RSS: 93 MB

● Clustered:

○ #9: 52.1 invocations per second. RSS: 403 MB

○ #10: 82.0 invocations per second. RSS: 270 MB

 Analysis:

1. 24% performance improvement in the standalone case.

2. 57% performance and 33% memory consumption improvement in the clustered case.

3. Memory consumption is slightly higher in a standalone case because actual data
structure with a reference counter is a bit larger than just string and standalone db
doesn’t copy data that much.

23

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Reassessment of weak references

● Since referenced row can be deleted, OVSDB has to store back-references in

order to find the source row and clean up actual references.

● Previously, the row was marked for re-assessment once one of the references in it

got removed (marked through the back-reference) or added (marked directly).

● Reassessment process re-checked all the references in a row.

● Following patch made it possible to only re-check references that was added or

removed making the whole process more or less incremental:

#11 4dbff9f0a | ovsdb: transaction: Incremental reassessment of weak refs.

24

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results (incremental weak refs)

● Standalone:

○ #10: 157.6 invocations per second. RSS: 93 MB

○ #11: 274.5 invocations per second. RSS: 97 MB

● Clustered:

○ #10: 82.0 invocations per second. RSS: 270 MB

○ #11: 197.3 invocations per second. RSS: 266 MB

 Analysis:

1. 74% performance improvement in the standalone case.

2. 140% performance improvement in the clustered case.

3. LBs are using weak references, so performance in that part improved dramatically, since
OVSDB doesn’t need to re-check the whole Load Balancer Group on every transaction.

25

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Transaction history limit

● Transaction history is a storage for recent transactions for the purpose of fast resync of

clients on re-connection with monitor_cond_since (monitor v3).

● History can store up to a 100 transactions.

● Fast re-sync is not that fast if transaction history is actually larger than the database itself, so

the size limit was introduced:

#12 317b1bfd7 | ovsdb: Don't let transaction history grow larger than the database.

26

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results (history limit)

● Standalone:

○ #11: 274.5 invocations per second. RSS: 97 MB

○ #12:273.5 invocations per second. RSS: 96 MB

● Clustered:

○ #11: 197.3 invocations per second. RSS: 266 MB

○ #12:185.0 invocations per second. RSS: 154 MB

 Analysis:

1. Performance in the clustered case degraded by 6% since the OVSDB frees memory
more frequently.

2. At the same time the memory consumption in a clustered case reduced significantly.
42% in this test scenario. And this can be much more significant in a real world case. In
ovn-kubernetes scenarios without LB Groups this change showed up to 99% reduction
in memory usage of OVN Northbound database.

27

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Further consolidation of strings

● Continuation of string deduplication work started in patch #10

● This time we’re re-using same strings for ovsdb objects and JSON objects in order

to avoid unnecessary copies every time we converting them into each other:

#13 dec429168 | ovsdb-data: Consolidate ovsdb atom and json strings.

28

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

SSL and memory copy

● Problem:

stream-ssl library performs a copy of the data before sending it every time.

● This last bit is to avoid the copy if not necessary:

#14 79953a57e | stream-ssl: Avoid unnecessary memory copies on send.

29

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results (strings + ssl)

● Standalone:

○ #12: 273.5 invocations per second. RSS: 96 MB

○ #14: 273.2 invocations per second. RSS: 102 MB

● Clustered:

○ #12: 185.0 invocations per second. RSS: 154 MB

○ #14: 207.0 invocations per second. RSS: 157 MB

 Analysis:

1. Again a slight memory consumption increase since the JSON structure is a bit larger than
the one we used for the OVSDB atom.

2. 12% performance improvement for the clustered database.

30

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results

Standalone:
 x3
87.9 (v2.15) 273.3

Clustered:
 x15
13.7 (v2.15) 207.0

31

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results: RSS

Standalone:

87MB (v2.15) 102MB

Clustered:
 x6
927MB (v2.15) 157MB

32

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results: 100K test

Standalone:
 x2.5
35.7 (v2.15) 92.3

Clustered:
 x1.2
71.1 (v2.15) 85.9

33

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Test results: Number of monitors

N
clients

Volume of monitor
updates per second

Standalone Clustered

10 223 MB 127 MB

50 680 MB 534 MB

100 880 MB 819 MB

250 1.1 GB 1.3 GB

500 1.1 GB 1.5 GB

1000 1.1 GB 2.3 GB

34

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

OVSDB Relay service model

ovn-controller #1

Main OVSDB
cluster

ovn-controller #M

ovn-controller #(N-1)M

ovn-controller #NM

OVSDB Relay #1

OVSDB Relay #N

[…]

[…]

[...]

$ ovsdb-server --remote=ptcp:<port>:<ip> relay:OVN_Southbound:tcp:<main-ip>:<main-port>

To start a relay server that will accept connections on <ip>:<port> and will relay the
OVN_Southbound database located at <main-ip>:<main-port>:

● Relay is a client for a main database,
but a server for actual clients.

● Relays can take a heavy lifting of
delivering monitor updates.

● Not read-only!

● Introduced in OVS 2.16

More information: https://docs.openvswitch.org/en/latest/topics/ovsdb-relay/

35

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Other important changes

● OVSDB C IDL:
○ Performance improvements and bug fixes (Dumitru Ceara)
○ Implementation split into 2 separate modules (Ben Pfaff)
○ New APIs to check table/column existence (Numan Siddique)

● Python IDL bug fixes and performance optimizations (Terry Wilson)

● RAFT cluster stability enhancements.

36

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Future plans

● Continue with incremental performance optimizations. There are still
low hanging fruits to optimize.

● Database compaction on the background.

● Explore possible optimizations for conditional monitoring.

● Re-work the test framework used for this presentation so everyone can
use it. Make it closer to “transactions per second” metric.

● Better configuration capabilities for relays (inactivity probes, etc.)

37

Open vSwitch and OVN 2021 Fall Conference | OVSDB: Performance and Scale Journey '21

Thanks!

38

Email: i.maximets@ovn.org

