
One build system to rule 
them all: the return of the 

meson
Sergey Madaminov (Stony Brook University)

William Tu (VMWare, Inc.)

December 7, 2021



Introduction
• Open vSwitch supports multiple operating systems
– Linux
– FreeBSD
– Windows
– and more

• Build process is mostly straightforward but not quite
– autotools suite has no native support for Windows
– MSYS2+MinGW for Windows
– Top-level Makefile has 7343 LoC
– All Makefiles comprise 8263 LoC



Agenda
• Introduction
• Motivation
• New build system
• Current progress
• Future work
• Conclusion



Why OvS Needs New Build System?
• Original motivation
– Attempts to port OvS-DPDK to Windows

• Why care about Windows?
– Widely used OS in the enterprise world
– DPDK may help with the lack of Win/Linux kernel 

knowledge
– Found autotools to be a limiting factor

• Thus, there are two main reasons
– Better experience within *nix family
– Better experience outside *nix family



Why OvS Needs New Build System?
• What is wrong with autotools?
– Steep learning curve => harder to contribute
– Humongous Makefiles => harder to debug

• What is wrong with MSYS2+MinGW?
– Indirection layer => more sources of errors
– Additional dependency => hampers adoption
– Separate code to maintain (cccl wrapper)
– Slow build process



Testbench
• Intel Core i7-8665U @ 1.90GHz
– Single-socket, 4 physical cores with Hyper-Threading

• 16 GB RAM
• OS: Windows 11
• WSL2 with RHEL8
• MSYS2: MSYS_NT-10.0-22000 3.2.0-340.x86_64
• Developer Command Prompt for VS 2019
• Compiler: Clang 12.0.1, Meson: 0.59, Ninja: 1.10
• OVS: 91e1ff5dde396fbcc8623ac0726066e970e6de15



RHEL8 WSL With Autotools

Command Time reported by /usr/bin/time

./boot.sh 8 seconds

./configure CC=clang CFLAGS="-O2" 23 seconds

make 3 minutes 10 seconds

make –j2 2 minutes

make –j4 1 minute 25 seconds

make –j8 1 minute 11 seconds



RHEL8 WSL With Meson
• Ninja performs parallel build by default

Command Time reported by /usr/bin/time

meson build (think ./configure) 7 seconds

ninja –C build 58 seconds



MSYS2+MinGW With Autotools

Command Time reported by /usr/bin/time

./boot.sh 35 seconds

./configure with Windows-specific flags 2 minutes 13 seconds

make –j4 2 hours 42 minutes 28 seconds

Not yet clear what causes such long compilation



MSYS2+MinGW With Meson
• Ninja performs parallel build by default

Command Time reported by /usr/bin/time

meson build (think ./configure) 4 seconds

ninja –C build 1 minute 42 seconds



Windows Native Build With Meson
• Developer Command Prompt for VS 2019 
• Ninja performs parallel build by default

Command Time reported by ptime

meson build (think ./configure) 3.9 seconds

ninja –C build 1 minute 23 seconds

No reason to keep using MSYS!



Agenda
• Introduction
• Motivation
• New build system
• Current progress
• Future work
• Conclusion



How To Choose Your Build System
• Identify what is that we want from the build system
– Native support for both Linux and Windows
– Easy to read and write build files
– Interaction with external projects and libraries
– Efficient

• What others have done?
– DPDK transitioned to the meson build system

“Those who cannot remember the past are condemned to repeat it,”
Spanish philosopher George Santayana



Picking New Build System

Build system Linux Windows Ease of use External projects Efficient

Make

autotools

CMake

VS solution

SCons

Bazel

Meson

Breaking a tie: use the same build system as DPDK



Meson Build System
• The only prerequisite is Python3.6+
• Declarative build system
• Build files are easy to read, write, and understand
• Simple dependency handling
• It is fast!
• Gaining adoption
– DPDK, Qemu, libvirt, Rizin, and many more!



Meson Build Files
• Write down your intentions in meson.build files
• Familiar tree-like nested hierarchy
– Start with top-level meson.build file
– Consecutively call meson.build files from subfolders

• Same (almost) commands for Linux and Windows



What Is Done And What Is Left
• Can build OvS on both Linux and Windows
• bash scripts are re-written in Python

• Port remaining checks and features
• Fix hundreds of compilation warnings
– requires changes to both Linux and Windows code

• Tests
– OvS uses autotest framework, which is for Linux
– Exploring avocado as a potential replacement



Concluding Remarks
• Autotools limits OvS expansion to Windows
• Meson eliminates the root cause for that issue
• Furthermore, it is fast(er)!
• RFC was published on the mailing list

• Contributions are welcome!
– Try it out, comment, submit patches, and open issues
– https://github.com/smadaminov/ovs-dpdk-meson-issues

Sergey Madaminov <sergey.madaminov@gmail.com>

https://github.com/smadaminov/ovs-dpdk-meson-issues

