

Agenda

- Community Solution: ct action
- Challenge
- Requirement and Design Goals
- Our Proposed Solution
 - Design
 - Performance
 - Impact on hwol support
- Further work

Community Solution: ct action

TX Recirc once: ct update conn state

RX Recirc twice: ct update conn state; vxlan tunnel decap

ofproto pkt trace result for tx:

```
bridge("br-int")
. priority
resubmit(,60)
 0. ip,in_port=2, priority 100
load: 0x2->NXM_NX_REG5[]
load:0xa->NXM NX REG6[]
ct(table=62,zone=10)
drop
-> A clone of the packet is forked to recirculate. The forked pipeline will be resumed at table 62.\,
Final flow: ip,reg5=0x2,reg6=0xa,in_port=2,vlan_tci=0x0000,dl_src=fa:16:3e:c8:0a:2c,dl_dst=fa:16:3e:c8
Megaflow: recirc_id=0,eth,ip,in_port=2,nw_frag=no
Datapath actions: ct(zone=10),recirc(0
         ed4) - resume conntrack with default ct state=trk|new (use --ct-next to customize)
Flow: recirc_id=0xed4,ct_state=new|trk,ct_zone=10,eth,ip,reg5=0x2,reg6=0xa,in_port=2,vlan_tci=0x00
dl_src=fa:16:3e:c8:0a:2c,dl_dst=fa:16:3e:c8:0a:29,nw_src=172.16.10.44,nw_dst=172.16.10.41,nw_proto=0,
nw tos=0,nw ecn=0,nw ttl=0
bridge("br-int")
Resuming from table 6
52. priority
resubmit(,71)
 73. ct state=+new+trk,ip,reg5=0x2, priority 90
ct(commit,zone=10)
drop
resubmit(,100)
 100. priority
-> no learned MAC for destination, flooding
bridge("br-tun")
in port=1, priority
 20. dl vlan=10, priority
resubmit(,21)
 1. dl_vlan=10, priority
strip_vlan
set_tunnel:0xa
output:2
-> output to native tunnel
```

Community Solution: ct action

• update the conn state in ct action and recirc back to match based on the new conn state

Community Solution: ct action

- The whole design is Flow-oriented, stateless
- rely on recirc to support conn track

Challenge1: performance degradation

cpu: skylake 6148, turbo on, 3.1Ghz ovs: 4pmd (2core,4ht), base ovs 2.9

numa: keep the vm running in the same numa node with pmd thread

test case: vm to vm, running with netperf to generate the traffic

~50% performance degradation

Challenge2: hard to support hardware offload

hard to support hardware offlaod base ct action:
 Require extra hw resource to support multi table to guarantee the hwol performance will not degrade

	Match		Action			Match	,	Action			
ovs dp	recirc port(6 v4()	5),eth),in_ (),ip	actions 10),rec	:ct(zone irc(0xf0		<pre>ct_state),recirc a),eth()</pre>	id(0xf0	1_pus	ns:clone(<mark>tn</mark> h()),out (3)),4)	
hw Nic		Parse	Key build	Match	Action	JMP Action	Parse	Key build	Match	Action	
			Pi	peline				Pip	eline		

Requirement and Design Goals

- Goals:
 - To get Higher performance in software datapath
 - Simplify the hardware offload support
- Requirement:
 - keep control plane programmable
 - up to the control plane to decide whether or not to enable the new logic
 - modular design
 - Support fallback to the old one

New design overview

- Introduce a new action: sg(allow|deny,[nat()],[alg()])
- Introduce a new fastpath cache: SST (Stateful Session Table Cache)
- The whole design is Connection oriented

Design of sg action

sg police:

base ct action:

```
table=0,priority=100,ip,ct state=-trk,action=ct(table=1)
    table=1,in_port=1,ip,ct_state=+trk+new,action=ct(commit),2
    table=1,in port=1,ip,ct state=+trk+est,action=2
    table=1,in port=2,ip,ct state=+trk+new,action=drop
    table=1,in port=2,ip,ct state=+trk+est,action=1
base sg action:
```

```
table=0,in port=1,ip, action=sg(allow),2
table=0,in port=2,ip, action=sg(deny),1
```

•Solution:

- Control plane no more need to specify the conn state in the match field
- Data plane will do a secondary translate base on the conn state and get final action

Design of sg action

Introduce a new action: sg(allow|deny,[nat()])

1. new conn	action:sg(allow)	pass
2. new conn	action:sg(deny)	drop
3. conn exist	action:sg(deny)	pass

•Solution:

- Control plane no more need to specify the conn state in the match field
- Data plane will do a secondary translate based on the conn state and get final action

Introduction of SST (Stateful Session Table)

statefull

stateless

Steps to insert an entry to SST:

- a) DP translate in sg action
- b) create new conn
- c) associate the conn with the flow
- d) insert conn to SST
- e) insert flow to the dpcls and EMC

Introduction of SST (Stateful Session Table)

statefull

stateless

Introduction of SST (Stateful Session Table)

statefull

stateless

- dpcls works as L2 cache
- avoid too much upcall to the ofproto slow path

More optimizations

Base on the new design, more optimizations can be done now:

- Unify vxlan decap dp flow
 - No more rely on recirc to finish the vxlan decap
- Merge actions
 - Since the dp flow has been unified, no more rely on recirc to support ct, we can merge the actions to simplify the action execute
- Use spin lock instead of mutex
 - Avoid context switch, and spin lock is much more lightweight
- Use hugepage based session memory pool to support session entry allocation
 - Eliminate the TLB miss events and speed up the allocation and free for each session entry
- batch execute tnl_push and tnl_pop

Performance

cpu: skylake 6148, turbo on, 3.1Ghz

ovs: 4pmd (2core,4ht), base ovs 2.9

numa: keep the vm running in the same numa node with pmd thread test case: vm to vm, running with netperf to generate the traffic

~260% performance improvement

Impact on hwol support

hardware offlaod support base on sg action:

	Match	Action			
	recirc_id(0),in_por	O -			
ovs dp	t(6),eth(),ipv4()	sh(), output 3			

hw Nic

Parse

Rey
build

Match

Action

Pipeline

Unify multi flow in ovs layer, no extra work need to do to offload to the HW Nic, much more easy to offload to the hw Nic.

Acknowledgement

support running on different archs:

CPU:

x86_64 / AMD / ARM

Linux distribution:

Not limited to a specific one

- Thanks to:
 - Wang Yao, Baidu
 - Mao Yingming, Baidu
 - Liu Feifei, Baidu
- Any comments on this design are welcome. Feel free to contact me via email
- Contact:
 - lindsay.yuan@jaguarmicro.com

THANKS FOR WATCHING

Contact: lindsay.yuan@jaguarmicro.com