®OvS

Open vSwitch

December 8-9, 2020

OvS Offload Layer Design Challenges

Hemal V. Shah, Distinguished Engineer and Architect, Broadcom Inc.
Sriharsha Basavapatna, Principal Software Engineer, Broadcom Inc.

° OvS Offload Layer

°* OvS Offload Capabilities

* OvS Offload Registration

°* OvS-DPDK Offload Thread Model Issues

°* Tunnel Decap Design Challenges

°* OvS-DPDK Partial Action Offload Design Challenges

° Differences between User Mode and Kernel Mode Offload Data Paths
° Summary

OvS Offload Layer

* Implements control path for flow offloads OvS-vSwitchd
* Device agnostic
°* Hidden from ofproto layer

netdev

* Splitin generic and provider sub-layers —| offload

° Enables multiple NIC flow offload APIs netdev provider

°* Flow APIs registered by specific provide
* Two subsets of flow APIs: N\ °fﬂ‘?:d
= Put, Delete, and Stat APIs for a specific flow prariast
= Create, Destroy, etc. APIs for flow dumps \4 rte_flow, TC
Flower etc. | NIC Driver

Control Path l

OvS Offload Capabilities

Match Fields and Actions supported by a device can’t be expressed
DPDK provides rte_flow_validate()

» But needs an additional trip to the device for every flow offload
= QvS currently does not use rte_flow validate()

Kernel TC Flower does not have equivalent of rte_flow_validate()

OvS Offload layer can be optimized to support device flow offload capabilities
= Could be a simple bitmask of match and actions supported

» Exported by each offload capable device
= Offload layer can use this bitmap before offloading to a device

OvS Offload Registration

° Each provider (e.g. netdev-offload-dpdk) registers a DP specific flow_api object
* Registration is done at the time of offload provider initialization

* flow_api object is added to a global list of registered flow APIs

* At the time of netdev creation, the corresponding flow APIs are initialized

° Issues
— Assumes every eth device supports flow-api
— No device (PMD) specific check
— If ‘hw-offload’ enabled in OVS, offload attempted on any eth_dev attached to OVS

OvS-DPDK Offload Layer Thread Model Issues

° PMD threads process packets, handle DP misses, OF classification

* Offload request is deferred to an offload thread

° Scheduling latency is involved in running the offload thread

° N PMD-threads : 1-offload-thread (serialization across multiple devices)
* Lack of offload error propagation back to PMD threads due to this model

* Lack of infra to share data and synchronize DP and offload threads

Tunnel Decapsulation HW-Offload Sequence

OF-Proto VM
7 N
__09, 9 __09 o __. 1
OoVS v i v 1 o
<
User-Datapath
| | A
® ® @ vxlan_vport
Ti—® © F
Cao N T —~
_____________ P T T I e
v v 4
rte_flow rte eth0 rte_eth1
— (vf-rep)
PMD T o
<« e D

NIC = —|='

Solid arrows: Pkt sequence
@ | Dotted arrows: Flow sequence

Packet and Flow Processing Sequence Enumerated

« Diagram shows ingress packet/flow sequence
Solid arrows: packet traversal; dotted arrows: flow processing
(1) First tunneled packet from the wire received by the PMD (via upink/PF)
(2) Packet is received by OVS datapath (when OVS polis PF)
(3) No datapath rule (flow miss); upcall made to classify the packet
(4) Ofproto classifies the packet; creates a datapth rule with actions
(5) Datapath rule/action executed

— tnl_pop() and recirculate the packet to tunnel port
(6) Packet is received by OVS datapath (in the ctx of VXLAN vPort)
(7) No datapath rule (flow miss); upcall made to classify the packet
(8) Ofproto classifies the packet; creates a datapth rule with actions

Packet and Flow Processing Sequence Enumerated

« (9) Datapath rule/action executed (forward); packet sent down to the VF-Rep
* (10) VF-Rep transmits packet down to the PF

* (11) PF loops the packet to the VM via the VF

« (12) Datapath adds the flow; initiates an offload request (F2)

« (13) Offload layer issues a rte_flow_create() to the PMD

 (14) PMD programs HW tables

« Control returns back to datapath in the ctx of the PF

« (15) Datapath adds the flow; initiates an offload request (F1)

* (16) Offload layer issues a rte_flow_create() to the PMD

« (17) PMD programs HW tables

* (18) Next packet from the wire decapsulated and sent directly to VM via VF

Tunnel Decap Offload Issues

°* Tunnel Decap involves two flows and recirculation in OvS

» Flow-F1 (Match: t dmac, t_dip, t_proto, t_port; Action: Tunnel pop and Output to tunnel port)
= Flow-F2 (Match: t_dip, t_sip, t_id, inner eth, Action: Output to VF-Rep)

°* Packet can’t be processed entirely in HW, until both flows are offloaded

°* Decap Flow Offload Sequences can be different (F2->F1, F12>F2, F2 only)

= PMDs can not assume a specific sequence
= PMDs need to internally handle all possible sequences

°* Tunnel metadata handling is complex
= QOVS SW datapath action is “tnl_pop” for F1, SW DP passes tunnel header as metadata
= HW can’t really pop tunnel header when F1 is offloaded (otherwise it loses tunnel metadata)
= HW miss on F2: Packet couldn’t be decapsulated since there is no F2 in HW (packet hit F1)

* Statistics: Double counting of F1 for F2 miss in HW complicates the design
°* Mapping tunnel vPort to Phy port: otherwise F2 is offloaded on all phy ports

OvS-DPDK Action Offload Challenges

« Challenges in extending partial offload infrastructure for action offload
- Partial offload currently supports only classification offload: Flow match
« Partial Action Offload RFC

= |dea is to extend partial offload to support real actions
= Actions like tunnel-encap/decap, vlan push/pop offloaded to HW
= HW classifies + executes specified actions

« Challenges

Today, partial offload is only supported on the ingress device

Scenarios that involve a SW ingress, but a HW egress offload are not considered

Deferred offloading in the context of a separate offload thread creates transient out-of- sync
PMD threads may continue processing actions after the flow was already offloaded

Lack of APIs to determine whether a flow is eligible for partial actions offload

An additional problem with ingress-partial-action is lack of data path assistance

User/Kernel DP Offload Differences

Handler threads process flow-miss/upcall PMD threads process flow-miss/upcall

Flow added to either DP or offloaded Flow always added to DP and offloaded
Offload attempted first; if fails added to DP Added to DP first and offload scheduled
Offload synchronous; handler thread waits Offload async; dispatched to offload thread
Offl errors returned to initiating thread Offl errors not returned to initiating thread
Dynamic rebalancing supported Dynamic rebalancing unsupported

Single (logical) flow table; no duplicate flows Flow table per-port, per-PMD; offload
handles duplicate flow-add

OvS Offload Layer Design is Complicated

Offload Capability and Discovery is primitive

Serialized Threading Model poses challenges for partial actions offload
Two bridge model poses significant challenges for tunnel decap offload
Differences between user and kernel mode offloads need to be reconciled

Overall, redesign of OvS offload layer should be considered

