Open vSwitch December 8-9, 2020 | COVID-19 era, Online

The Discrepancy of the MegaFlow Cache in OVS Final Episode

Levente Csikor, National University of Singapore

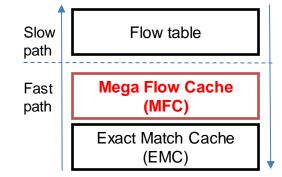
Vipul Ujawane IIT Karaghpur Dinil Mon Divakaran Trustwave (a Singtel Company) Trustwave

Recap: Flow caches, packet classification and TSS

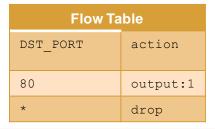
Multi-layered cache architecture in the fast path

- Exact-match cache (EMC)
- MegaFlow Cache (MFC)
 - arbitrary bitwise wildcards

Packet classification in the MFC


Based on the Tuple Space Search (TSS) scheme

TSS in the MFC


- Entries matching on the same header bits are collected into tuples
 - Lookup in a tuple is fast
- BUT: tuples are searched sequentially (until match found)

□ PKT_IN \rightarrow APPLY_MASK \rightarrow LookUp \rightarrow Repeat until cache hit

- □ if NO match:
 - Classify in the flow table
 - Cache the corresponding tuple in the MFC

Recap: Tuple Space Search

Can be a costly linear search in case of lots of masks!

dport=32777

0/ffc0 64/fff		64/fff0	80/ffff	80/ffff 81/ffff		256/ff00	32768/8000	
1drop2drop3drop4drop5drop6drop63drop		64 drop 65 drop 66 drop 67 drop 68 drop 69 drop 79 drop	80 allow	81 drop		256 drop 257 drop 258 drop 259 drop 260 drop 261 drop 511	 32768 32769 32770 32771 32772 32773 65535	drop drop drop drop drop drop

L. Csikor - Discrepancy of the MegaFlow Cache in OVS, Final Episode.

Discrepancy in the MFC

D For each flow table/ACL

- Easy-to-craft packet sequence
- Inflates the tuple space to a certain extent
- Linear search process of TSS spends to much time on each packet
- Overall packet processing speed drops down
- Denial-of-Service

Packet sequence characteristics

- Legitimate
 - No explicit pattern
 - Cumbersome to detect and mitigate
- Low-rate (< 1 Mbps)</p>
 - Almost every packet spawns a new tuple
 - Exploits the 10 second expiration time in the MFC

Limitations of previous works

OVS and its kernel datapath

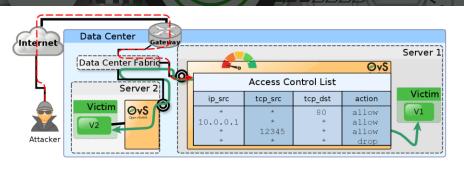
- □ When installed via the packet manager (e.g., apt-get install openvswitch-switch)
- Kernel datapath is shipped by the Linux kernel
 - Different than the one of the OVS developers
 - No big fan of heavy caching -> no EMC
- □ OVS-DPDK
 - Same code base for the fast-path
 - D MFC should work the same

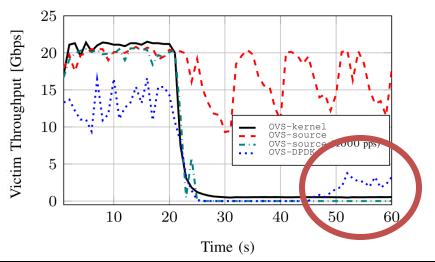
Evaluations

□ Setup

- OVS in KVM (Xeon 6230, Mellanox CX-5)
- iperf3 in the VMs for performance indicator
- ~9000 tuples according to the ACL
- Attack starts at the 20th second
- Low rate: 1000 pps (~650 kbps, 64B)

OVS-kernel (2.10 - kernel 4.19.0-8-amd64)


Good-old default setup


OVS-source (2.13.90 - manually compiled)

- Strange behavior: like EMC is being flushed after populated every time
- defeated at 4000 pps

OVS-DPDK (19.11)

- DPDK-accelerated OVS
- Slightly worse base-line perf. due to iperf
- Resurgence around the 45th second!

L. Csikor - Discrepancy of the MegaFlow Cache in OVS, Final Episode.

OVS-DPDK: Enhancements

Ranking in the tuple space

- 2016 patch
- lib/dpif-netdev.c:
 - static void dpcls_sort_subtable_vector(struct dpcls cls)
 - Sort tuples in every second according their hit counts
- □ Result
 - Higher rate benign traffic can be found much faster
 - Malicious traffic requires more time to be classified, though!
 - Overall packet performance is still affected

OVS-DPDK: Defeating the ranking

□ Key aspect 1: Linear search starts from the "end of the tuple space"

Key aspect 2: Freshly inserted tuples are ranked the highest – inserted at the end

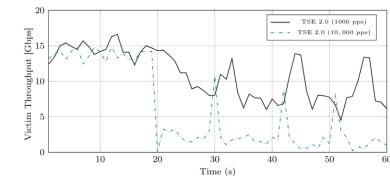
- Performance depends on the
 - Rank of the benign flows
 - Number of masks in the MFC
 - Rate of the attack traffic

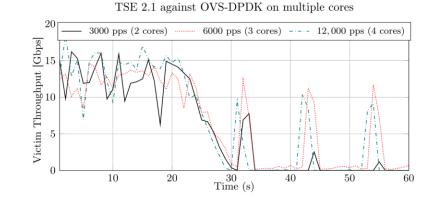
Tuple Space Explosion attack v2.0 (TSE 2.0)

- Idea: Keep the ranking process busy
- □ How?
 - Stop and restart attack
 - Let some "older" tuples expire (and therefore disappear)
 - Then, respawn them again
 - Without increasing the attack rate
- □ Why?
 - Malicious tuples will be ranked the highest again
 - Benign traffic will never be ranked high
 - We still maintain thousands of masks in the MFC
 - Attack rate is still low
 - Even lower due to the short pauses
 - 10 seconds attack time, 2 seconds pause
- Result: ranking defeated -> benign traffic can never resurge

OVS-DPDK: mutli-core

TSE 2.0 does not work in multi-core setups


- □ Even against 2-core
- Spikes are the sleep times


What NOT to do:

- Simply increase attack rate
- Traffic trace will be looped faster
- □ No tuple will expire -> TSE 1.0

□ **TSE 2.1: Idea**

- Adjust the traffic trace
 - Send each packet n times
- □ Increase the attack rate *n*-fold
- Tuples will expire and respawned
- Due to the attack rate:
 - Complete DoS

OVS-DPDK with 2 cores

L. Csikor - Discrepancy of the MegaFlow Cache in OVS, Final Episode.

Conclusion and Contact information

- Discrepancy in the MFC is still there
 - OVS-source with EMC behaves strange
 - □ Similarly to other unknown side-effects [1]
 - □ OVS-DPDK with the ranking alleviates the issue
 - But we can overcome this by carefully adjusting the original attack vectors

More detailed study on arXiv

https://arxiv.org/abs/2011.09107

Levente Csikor

11

NUS-Singtel Cyber Security Research & Development Laboratory National University of Singapore

[1] . A. Theurer, "Testing the Performance Impact of the Exact Match Cache," OVS Fall Conference, 2018.

L. Csikor - Discrepancy of the MegaFlow Cache in OVS, Final Episode.