
Anita Tragler
Product Manager

Mark Iskra
Marketing Director

Majd Dibbiny
Software Director

[The Long Road to] Deployable

OVS Hardware Offloading

for 5G Telco Clouds

OVS Conference - 11th December 2019
Westford

HW OVS Offloading Evolution

● 2016 Vision: what is a made for purpose

processor could handle OvS flows?

● That vision has matured and required the

support of many communities including

OVS, Linux, OpenStack, etc..

2016 Vision:

2

Telco Cloud: Common Network Requirements

● Virtual networking -- VxLAN

● Resilience through redundancy

● Bonded Uplinks with LACP

● VLAN-Trunking to hosted VNFs

● BGP for route discovery between leaves

● Mirrored traffic flows

● Performance:
○ Small packets at high rates and throughput with rate limiting

○ Rapid flow creation and eviction: churn

● Scale: especially for flows (>10K per sec)

● Cost and power efficiency

● OpenStack and K8s integration
3

4

Spine

Leaf

VM2

OVS
VTEP 2

VLAN
100

VLAN 10

192.168.1.1/28

Border

Host1 MAC

VTEP IP
10.0.0.1

Underlay
VLAN 10

VM1 MAC

VM1 IP
192.1681.1

Overlay
VLAN 100

VM1

Host1

VLAN
100

OVS
VTEP 1

Host2

L3
Fabric

Spine

Leaf

VMn

OVS
VTEPn

VLAN n

VLAN 20

192.168.100.1

Border

Host100
MAC

VTEP IP
20.0.0.1

Underlay
VLAN 20

VM1 MAC

VM100 IP
192.168.100.1

Overlay
VLAN 200

VM100

Host100

VLAN
200

OVS
VTEP 100

Hostn

192.168.1.2/28

10.0.0.1 10.0.0.2

VLAN 10

Cluster1
Cluster2

VNI 1000

VNI 2000

VXLAN

VNI 2000

VXLAN

VXLAN
VNI 1000

VXLAN
VNI 2000

DataCenter
Gateways

Telco SDN Multi-Cluster Deployment
with VXLAN Overlay

BGP eVPN with VXLAN overlay

SD-WAN BGP L3VPN with MPLS

ECMP

NIC

VF1 VF2 VF3 VF4

P1 P2

VM1 VM2 VM4

Kernel

User

……

OVS eswitch

OVS

SDN
Control

TC Flower

Flow
programming

OpenStack

SDN Plugin

P
F

Slow-path

OVS-Kernel

LAG

VM3

NIC

VF1 VF2 VF3 VF4

P1 P2

VM5 VM6 VM8
……

OVS eswitch

OVS

TC Flower

P
F

Slow-path

OVS-Kernel

LAG

VM7

Flow
programming

T
T-Tagged

U-Untagged

U T U

Server-1 Server-2

T U T U

DC-GW

user traffic

vlan
100

vlan
200

vlan
100

vlan
300

Leaf

North-South
traffic

East-West
traffic

Leaf

VTEP VTEP

L3VNI 60
L2VNI 2000

VXLAN overlay tunnels

VNF service chain

North South and East West traffic with VXLAN overlay and VLAN tagging

L3VNI 50

5

Bonding Offload - VF-LAG

6

VF LAG Overview

● Requirements: HW offloads uses SR-IOV, therefore there’s a need to offload

the Linux Bond functionality:
○ Link aggregation: Combining number of physical ports (IEEE 802.11ad)

○ High availability: Supporting Link failover

● Expectations:
○ Single VF aggregating both physical ports of the same NIC for RX and TX

○ VF associated with either PF sends data over either physical port

○ Transparent to the VM

○ Initialized by creating a bond device that enslaves both ports of the NIC

7

VF LAG HW Offload

● In LAG mode flow rules are offloaded to the FDB of both e-switches for high

availability
○ For uplink representors, Shared TC Block is used to replicate the rules on both e-switches.

○ For representors, the driver is responsible to replicate the rules to both e-switches.

● The driver registers to netdev events to set the affinity of live ports

● Send queues’ affinity is set in a round-robin fashion to both physical ports

8

VLAN Tagging and Header Rewrite

9

VLAN Tagging and IP Header rewrite

Outer
UDP

VXLAN
Inner
Ethernet

Inner IP Payload

VM Src MAC
VM Dst
MAC

Overlay or
QinQ VLAN

Ethertype

IP Header IP protocol VM Src IP VM Dst IPIP checksum

Local Host
Src MAC

Remote Host or
gateway Dst MAC

Underlay
VLAN

Ethertype

IP Header IP protocol VM Src IP VM Dst IPIP checksum

Outer
UDP

VXLAN
Inner
Ethernet

Inner IP
Outer
Ethernet

Outer IP
Outer
UDP

VXLAN

Decrement TTL when routing across segments

Push or pop overlay VLAN

Set or copy IP ToS/DSCP Set UDP src port with hash on inner L2/L3/L4 headers

● Overlay tagging:

○ Pushing VLAN tag for VM traffic

○ Popping VLAN tag for VM traffic

● Underlay tagging:

○ Mainly used to ensure segregation of different type of traffic (Control plane, User plane, Monitoring..)

● Header rewrites:

○ TTL decrement for routing across subnets

○ Copy TOS from Inner

○ UDP source port: Hash of inner headers to provide entropy for ECMP

10

Remote Mirroring Overview

● Duplicating the traffic of one VF to a remote VF/Host

● Use cases:
○ Debuggability

○ Lawful intercepts

○ Monitoring

○ Other..

11

Sample configurations for local and remote traffic

KVM KVM

VM21

Data/Mgmt Plane (192.168.50.0/24)

.51 .52

V2 (RHEL 7.5)

VXLAN

alubr0alubr0

VRS
-TC

VRS
-TC

Local
Traffic

12

NIC

VM11

.154.71

V1 (RHEL 7.5)
Mirroring

Destination

VF1 VF2 VF1 VF2

Remote Mirroring Configurations

VM22

Underlay Mirroring Network (135.224.0.0/16)

GRE

VM12

NIC NIC

Remote
Traffic

.143.153 .143.154

Sample configurations for local and remote traffic

KVM KVM

VM81

Data/Mgmt Plane (192.168.50.0/24)

.51 .52

V2 (RHEL 7.5)

VXLAN

alubr0alubr0

VRS
-TC

VRS
-TC

13

VM11

V1 (RHEL 7.5)

Mirroring
Destination

VF1 VF2 VF1 VF2

Remote Mirroring to the Overlay

VM22

Underlay Mirroring Network (135.224.0.0/16)

NIC NIC

.143.153 .143.154

VxLAN Tunnels

VM11 Ingress & Egress both mirrored to 135.224.154.71 via GRE tunnel

KVM KVM

VM22

Overlay (192.168.50.0/24)

.51 .52

V2 (RHEL 7.5)

VXLAN

alubr0alubr0

VRS
-TC

VRS
-TC

GRE
Tunnel

14

NIC

VM11

.154.71

V1 (RHEL 7.5)
Mirroring

Destination

VF1 VF1

Remote Mirroring To the Underlay

Underlay Mirroring Network (135.224.0.0/16)

GRE

NIC NIC

VxLAN
Tunnel

.143.153 .143.154

VxLAN/GRE Offloaded Mirrored Flow Example

Decap Ingress and GRE Mirror to underlay (135.227.154.71)

[root@asap1 ~]# ovs-dpctl dump-flows -m

ufid:bc7c9de6-5042-42e3-8053-1171da6e4c90,

skb_priority(0/0),tunnel(tun_id=0xcb218d,src=192.168.50.52,dst=192.168.50.51,ttl=64,flags(+key)),sk

b_mark(0/0),in_port(vxlan_sys_4789),eth(src=00:00:00:00:00:00/00:00:00:00:00:00,dst=c6:17:f1:df:4e:

d2),eth_type(0x0800),ipv4(src=0.0.0.0/0.0.0.0,dst=10.10.0.111,proto=6,tos=0/0x3,ttl=0/0),tcp(src=40

96/0xf000,dst=0/0), packets:547607, bytes:63522412, used:0.480s, offloaded:yes, dp:tc,

actions:set(tunnel(tun_id=0x0,dst=135.227.154.71,tp_dst=0,flags(key))),gre_sys,ens15f0_0

15

Looking ahead for

OVS TC/flower HW offload

16

OVS TC/flower Flow Offload

Hypervisor

VM

VF NIC

VM

ovsdb-server

ovs-vswitchd

Openstack

Neutron

Port1 Port2

NIC OVS eswitch

VF1 VF2 PF

OVS Kernel

datapath

TC/flower
offload

VF NIC

Linux bond

Bond offload

SR-IOV

OVS 2.11 with RHEL 7.7, Mellanox ConnectX-5 (mlx5)

Current Features
● Line rate throughput 25Gbps, 50Gbps
● Flow Match - 5 Tuple, IPv4, IPv6, MAC,

TCP/UDP port, protocol, VLAN, VXLAN
● Action - set QoS ToS/DSCP, set TTL
● Overlay encap - VLAN, QinQ, GRE, VXLAN
● VLAN aware VMs - VXLAN over VLAN
● Scale to thousands of flows with MAC learning
● ethtool SR-IOV per VF Rate limiting
● Linux bonding offload - VF-LAG
● Remote port mirroring with GRE encap

Work in progress (community collaboration)
● Flow insertion rate - TC parallelization, NIC

software steering
● Traffic engineering - MPLS Segment Routing
● Load balancer & Firewall - Connection tracking
● vDPA - replace SR-IOV, live migration

17

Flow aggregation and insertion rate

18

19

● Are flows static or dynamic?

● With flow aggregation, individual user

(micro) flows are not exposed?

● Flow expansion occurs in the NIC

● But this is not always the case.

● Flows can be dynamic and user flows are

exposed and need to be handled at the 5-

Tuple micro-flow level

● Flow churn and higher insertion rate

Flow aggregation and insertion rate

● Typically all North-South flows are routed, East-West flows

between VNFs are routed, Remote mirroring traffic is routed

● Routed flows need TTL decrement, which is done as kernel

match and set

● This can result in explosion of user flows

● Kernel patch: [PATCH net-next] openvswitch: add TTL

decrement action

User flow aggregation: Routed flows with TTL decrement

Routed Flow VXLAN Encap

skb_priority(0/0),skb_mark(0/0),in_port(ens15f0_2),eth(src=c6

:17:f1:df:4e:d3,dst=68:54:ed:00:8e:10),eth_type(0x0800),ipv4(

src=192.168.0.0/255.255.0.0,dst=192.168.2.1,proto=6,tos=0/0x3

,ttl=64),tcp(src=32768/0x8000,dst=0/0), packets:3381147,

bytes:5288111012, used:0.700s, offloaded:yes, dp:tc,

actions:set(tunnel(tun_id=0x86d288,dst=10.10.10.2,tp_dst=4789

,flags(key))),set(eth(src=68:54:ed:00:13:5c,dst=92:eb:fc:be:f

1:c8)),set(ipv4(ttl=63)),vxlan_sys_4789

Spine

Leaf

VM2

OVS
VTEP 2

VLAN
200

VLAN 10

192.168.1.1/28

VM1

Host1

VLAN
100

OVS
VTEP 1

Host2

192.168.2.1/28

10.10.10.1 10.10.10.2

VLAN 10

VXLAN
L3VNI 8300

ECMP

20

https://www.spinics.net/lists/kernel/msg3313783.html

● Load balance traffic across 4 or more ECMP paths

● Hash (dp_hash) on Inner L2/L3/L4 headers; 5-tuple

hash IP src/dst, TCP/UDP port, protocol

● Set the outer VXLAN UDP source port with hash

results

● This is dp_hash bug, first packet (ovs-vswitchd) and

consequent packets are hashed differently in

kernel/NIC

● Today hashing is being done in userspace, hence

explosion of flows

● Move ECMP/entropy hash to kernel and offload to NIC

User flow aggregation - Hash for ECMP/Entropy

Spine

Leaf

VM2

OVS
VTEP 2

VLAN
100

VLAN 10

192.168.1.1/28

VM1

Host1

VLAN
100

OVS
VTEP 1

Host2

192.168.1.2/28

10.0.0.1 10.0.0.2

VLAN 10

VXLAN
VNI 1000

ECMP

21

VNF Redundancy VIP 1.1.1.1

Future - Load Balancing for East-West Services

Future use cases with potential for flow

explosion and flow churn

Inner IP/TCP/UDP headers need to be

processed on the fly

● OVS for load balancers to distribute East-

West traffic across 3-8 remote VNFs

● Resolve VIP and alternate destination

VNF MAC/IP for each flow

● User Flows from VM1 need to be

distributed across 3 VNF Set (VM2, VM3,

VM4) on Host 2 and Host3

● Flows will be distributed across 4 ECMP

paths

Spine

Leaf

VM2

OVS
VTEP 2

20.1.1.3/28

VM1

Host1

OVS
VTEP 1

Host2

20.1.1.1/28

10.0.0.1 10.0.0.2

VXLAN
VNI 1000

ECMP

VM4

OVS
VTEP 3

Host3

192.168.1.2/28

10.0.0.3

VM3

20.1.1.2/28

22

Future - Network Policy, ACLs, Connection tracking
Future use cases with potential for flow explosion

and flow churn

● Firewall and network policy (Security Groups)

between services

● Inner IP/TCP/UDP headers need to be

examined on the fly for firewall rule

● Allow traffic from VM1 to VM3 and VM2 to

VM4 but deny all other traffic

○ Offload Stateless ACLs

○ Offload Stateful security groups with

OVS Connection Tracking

○ Conntrack Offload - Flow setup in slow

path and then offload flow to NIC

● Connection tracking offload patches

https://patchwork.ozlabs.org/cover/1203705/

Spine

Leaf

VM2

OVS
VTEP 2

20.1.4.3/24

VM1

Host1

OVS
VTEP 1

Host2

20.1.21.1/24

10.0.0.1 10.0.0.2

ECMP

VM4

OVS
VTEP 3

Host3

20.1.1.1/24

10.0.0.3

VM3

20.1.3.1/24

23

https://patchwork.ozlabs.org/cover/1203705/

● In kernel 5.4 - TC parallelization for flow injection and bypass the RTNL-lock

e474619a2498 ("net: sched: flower: don't check for rtnl on head dereference")

195c234d15c9 ("net: sched: flower: handle concurrent mask insertion")
259e60f96785 ("net: sched: flower: protect masks list with spinlock")
9a2d93899897 ("net: sched: flower: handle concurrent filter insertion in
fl_change")
272ffaadeb3e ("net: sched: flower: handle concurrent tcf proto deletion")
3d81e7118d57 ("net: sched: flower: protect flower classifier state with
spinlock")
c24e43d83b7a ("net: sched: flower: track rtnl lock state")
…

● Mellanox NIC driver - software steering and parallelization

Fixed in rdma-core-26.0-1

[net-next 00/13] Mellanox, mlx5 tc flow handling for concurrent execution [Part1] [Part2] [Part3]

Improving flow injection rate to NIC

Increase flow insertion rate to > 10K flows/s

24

https://www.spinics.net/lists/netdev/msg589107.html
https://www.spinics.net/lists/netdev/msg591917.html
https://www.spinics.net/lists/netdev/msg594682.html

MPLS over UDP and Segment Routing for the Edge

25

26

Spine

Leaf

VM1

OVS
VRF A

DC-GW

Host1

SD-WAN

Spine

Leaf

VM2

OVS
VRF

DC-GW

Host2

DataCenter2

SD-WAN BGP L3 VPN/VPLS
Segment Routing MPLS

DataCenter1 Path Computation
Global Controller

SDN
Control

SDN
Control

SR
MPLS
(OSPF
or ISIS)

Delivers seamless DC-WAN interconnectivity

• Global SDN controller with end-to-end topology and service awareness

• Policy-driven Source Routing in the Datacenter

• End-to-end Traffic engineering - choose ECMP path

• Reduce load on Data Center gateway - no VXLAN to MPLS VPN
translation

• Service Chaining and improved multicast support

MPLS to the Edge - Source based traffic engineering

SR
MPLS
(OSPF
or ISIS)

MPLS over UDP and
Segment Routing MPLS

VPLS A

Data Center
MPLS over UDP

Host IP/UDP

User IP

Payload

DCGW

Data Center
Segment Routing

VM ETH

user IP

Payload

VM ETH

user IP

Payload

MPLS-over-UDP

SVC LBL

MPLSn

Host IP/UDP

SVC LBL

DLEAF SID

User IP

Payload

SVC LBL

SR-MPLS SID1

SVC LBL

SR-MPLS SIDn MPLSn

DLEAF SID

DLEAF SID
DLEAF LBL

27

VRF A

VNF

Host2

OVS
VRF A

Leaf

VPLS A

VNF

Host1

OVS
VPLS A

Leaf VRF A

VNF

Host3

OVS
VRF A VNF

Host1

OVS
VPLS A

SR-MPLS

SR-MPLS SIDn

Host ETH

Host ETH

28

• MPLS Segment Routing - label manipulations in the OVS kernel layer:
• Push 3-6 labels for tunneled traffic with kernel forwarding

• Set the label TTL and EXP fields to potentially different values for each label

• POP at least 2 labels on a received packet

• Encap both L2VPN (Eth/IP) and L3VPN (IP) packets
• Kernel patches (in progress) lightweight tunnel MPLS support

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/tree/net/mpls/internal.h#n6

• OVS kernel MPLS multi-label support - https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-

next.git/commit/?id=fbdcdd78da7c95f1b970d371e1b23cbd3aa990f3

• MPLS over UDP- insert/remove UDP/IP header on top of the MPLS pushed/popped
label stack
• Needed when MPLS packet is tunneled over an non-MPLS IP underlay

• Packet header encapsulation as per RFC 7510
• Kernel MPLS over UDP support - https://patchwork.ozlabs.org/patch/1173153/

• NIC offload capabilities to be addressed
• RSS handled with UDP src-port hash / TCP segmentation/Re-assembly could be a challenge on deep encap.

OVS and Kernel support for MPLSoUDP & Segment Routing

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/tree/net/mpls/internal.h#n6
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=fbdcdd78da7c95f1b970d371e1b23cbd3aa990f3
https://patchwork.ozlabs.org/patch/1173153/

Thank-you

29

PCAP@OVS egress

Src IP: VRS Dst IP: DCGW

VNF to PNF example

IPs

MPLS labels

BSID: 50100

HV SID: 524283

SL: 524286

UDP Dst Port 6635

RFC7510: MPLSoUDP

30

OVS tables for SR over UDP

Table 13 = Routing

Table 31 = Service Label

Table 66 = Remote BGP LU SID

Table 62 = BSID

VNF to WAN endpoint example

31

