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HW OVS Offloading Evolution

● 2016 Vision: what is a made for purpose 

processor could handle OvS flows?

● That vision has matured and required the 

support of many communities including 

OVS, Linux, OpenStack, etc..

2016 Vision:

2



Telco Cloud: Common Network Requirements

● Virtual networking -- VxLAN

● Resilience through redundancy  

● Bonded Uplinks with LACP

● VLAN-Trunking to hosted VNFs

● BGP for route discovery between leaves

● Mirrored traffic flows

● Performance: 
○ Small packets at high rates and throughput with rate limiting

○ Rapid flow creation and eviction: churn

● Scale: especially for flows (>10K per sec)

● Cost and power efficiency

● OpenStack and K8s integration
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Bonding Offload - VF-LAG
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VF LAG Overview

● Requirements: HW offloads uses SR-IOV, therefore there’s a need to offload 

the Linux Bond functionality:
○ Link aggregation: Combining number of physical ports (IEEE 802.11ad)

○ High availability: Supporting Link failover

● Expectations:
○ Single VF aggregating both physical ports of the same NIC for RX and TX

○ VF associated with either PF sends data over either physical port 

○ Transparent to the VM

○ Initialized by creating a bond device that enslaves both ports of the NIC
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VF LAG HW Offload

● In LAG mode flow rules are offloaded to the FDB of both e-switches for high 

availability
○ For uplink representors, Shared TC Block is used to replicate the rules on both e-switches.

○ For representors, the driver is responsible to replicate the rules to both e-switches.

● The driver registers to netdev events to set the affinity of live ports

● Send queues’ affinity is set in a round-robin fashion to both physical ports
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VLAN Tagging and Header Rewrite
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VLAN Tagging and IP Header rewrite 
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● Overlay tagging:

○ Pushing VLAN tag for VM traffic

○ Popping VLAN tag for VM traffic 

● Underlay tagging:

○ Mainly used to ensure segregation of different type of traffic (Control plane, User plane, Monitoring.. )

● Header rewrites:

○ TTL decrement for routing across subnets

○ Copy TOS from Inner

○ UDP source port: Hash of inner headers to provide entropy for ECMP 
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Remote Mirroring Overview

● Duplicating the traffic of one VF to a remote VF/Host

● Use cases:
○ Debuggability

○ Lawful intercepts

○ Monitoring

○ Other..
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Sample configurations for local and remote traffic
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Sample configurations for local and remote traffic
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VM11 Ingress & Egress both mirrored to 135.224.154.71 via GRE tunnel
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VxLAN/GRE Offloaded Mirrored Flow Example

Decap Ingress and GRE Mirror to underlay (135.227.154.71)

[root@asap1 ~]# ovs-dpctl dump-flows -m

ufid:bc7c9de6-5042-42e3-8053-1171da6e4c90, 

skb_priority(0/0),tunnel(tun_id=0xcb218d,src=192.168.50.52,dst=192.168.50.51,ttl=64,flags(+key)),sk

b_mark(0/0),in_port(vxlan_sys_4789),eth(src=00:00:00:00:00:00/00:00:00:00:00:00,dst=c6:17:f1:df:4e:

d2),eth_type(0x0800),ipv4(src=0.0.0.0/0.0.0.0,dst=10.10.0.111,proto=6,tos=0/0x3,ttl=0/0),tcp(src=40

96/0xf000,dst=0/0), packets:547607, bytes:63522412, used:0.480s, offloaded:yes, dp:tc, 

actions:set(tunnel(tun_id=0x0,dst=135.227.154.71,tp_dst=0,flags(key))),gre_sys,ens15f0_0
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Looking ahead for 

OVS TC/flower HW offload
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OVS TC/flower Flow Offload 

Hypervisor

VM
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OVS 2.11 with RHEL 7.7, Mellanox ConnectX-5 (mlx5)

Current Features
● Line rate throughput 25Gbps, 50Gbps
● Flow Match - 5 Tuple, IPv4, IPv6, MAC, 

TCP/UDP port, protocol, VLAN, VXLAN
● Action - set QoS ToS/DSCP, set TTL
● Overlay encap - VLAN, QinQ, GRE, VXLAN
● VLAN aware VMs - VXLAN over VLAN
● Scale to thousands of flows with MAC learning
● ethtool SR-IOV per VF  Rate limiting
● Linux bonding offload - VF-LAG 
● Remote port mirroring with GRE encap

Work in progress (community collaboration)
● Flow insertion rate - TC parallelization, NIC 

software steering
● Traffic engineering - MPLS Segment Routing
● Load balancer & Firewall - Connection tracking
● vDPA - replace SR-IOV, live migration
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Flow aggregation and insertion rate 
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● Are flows static or dynamic?

● With flow aggregation, individual user 

(micro) flows are not exposed?

● Flow expansion occurs in the NIC

● But this is not always the case. 

● Flows can be dynamic and user flows are 

exposed and need to be handled at the 5-

Tuple micro-flow level

● Flow churn and higher insertion rate

Flow aggregation and insertion rate  



● Typically all North-South flows are routed, East-West flows 

between VNFs are routed, Remote mirroring traffic is routed 

● Routed flows need TTL decrement, which is done as kernel 

match and set 

● This can result in explosion of user flows

● Kernel patch: [PATCH net-next] openvswitch: add TTL 

decrement action

User flow aggregation: Routed flows with TTL decrement

Routed Flow VXLAN Encap
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src=192.168.0.0/255.255.0.0,dst=192.168.2.1,proto=6,tos=0/0x3

,ttl=64),tcp(src=32768/0x8000,dst=0/0), packets:3381147, 

bytes:5288111012, used:0.700s, offloaded:yes, dp:tc,

actions:set(tunnel(tun_id=0x86d288,dst=10.10.10.2,tp_dst=4789

,flags(key))),set(eth(src=68:54:ed:00:13:5c,dst=92:eb:fc:be:f

1:c8)),set(ipv4(ttl=63)),vxlan_sys_4789
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● Load balance  traffic across 4 or more ECMP paths

● Hash (dp_hash) on Inner L2/L3/L4 headers; 5-tuple 

hash IP src/dst, TCP/UDP port, protocol

● Set the outer VXLAN UDP source port with hash 

results

● This is dp_hash bug, first packet (ovs-vswitchd) and 

consequent packets are hashed differently in 

kernel/NIC

● Today hashing is being done in userspace, hence 

explosion of flows

● Move ECMP/entropy hash to kernel and offload to NIC

User flow aggregation - Hash for ECMP/Entropy
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VNF Redundancy  VIP 1.1.1.1

Future - Load Balancing for East-West Services

Future use cases with potential for flow 

explosion and flow churn  

Inner IP/TCP/UDP headers need to be 

processed on the fly

● OVS for load balancers to distribute East-

West traffic across 3-8 remote VNFs

● Resolve VIP and alternate destination 

VNF MAC/IP for each flow

● User Flows from VM1 need to be 

distributed across 3 VNF Set (VM2, VM3, 

VM4) on Host 2 and Host3

● Flows will be distributed across 4 ECMP 

paths
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Future - Network Policy, ACLs, Connection tracking
Future use cases with potential for flow explosion 

and flow churn  

● Firewall and network policy (Security Groups) 

between services

● Inner IP/TCP/UDP headers need to be 

examined on the fly for firewall rule 

● Allow traffic from VM1 to VM3 and VM2 to 

VM4 but deny all other traffic

○ Offload Stateless ACLs

○ Offload Stateful security groups with 

OVS Connection Tracking 

○ Conntrack Offload - Flow setup in slow 

path and then offload flow to NIC

● Connection tracking offload patches 

https://patchwork.ozlabs.org/cover/1203705/
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● In kernel 5.4 - TC parallelization for flow injection and bypass the RTNL-lock

e474619a2498 ("net: sched: flower: don't check for rtnl on head dereference")

195c234d15c9 ("net: sched: flower: handle concurrent mask insertion")
259e60f96785 ("net: sched: flower: protect masks list with spinlock")
9a2d93899897 ("net: sched: flower: handle concurrent filter insertion in 
fl_change")
272ffaadeb3e ("net: sched: flower: handle concurrent tcf proto deletion")
3d81e7118d57 ("net: sched: flower: protect flower classifier state with 
spinlock")
c24e43d83b7a ("net: sched: flower: track rtnl lock state")
…

● Mellanox NIC driver - software steering and parallelization

Fixed in rdma-core-26.0-1

[net-next 00/13] Mellanox, mlx5 tc flow handling for concurrent execution [Part1] [Part2] [Part3]

Improving flow injection rate to NIC

Increase flow insertion rate to > 10K flows/s
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MPLS over UDP and Segment Routing for the Edge
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MPLS over UDP and 
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• MPLS Segment Routing - label manipulations in the OVS kernel layer:
• Push 3-6 labels for tunneled traffic with kernel forwarding 

• Set the label TTL and EXP fields to potentially different values for each label 

• POP at least 2 labels on a received packet

• Encap both L2VPN (Eth/IP) and L3VPN (IP) packets
• Kernel patches (in progress) lightweight tunnel MPLS support 

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/tree/net/mpls/internal.h#n6

• OVS kernel MPLS multi-label support - https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-

next.git/commit/?id=fbdcdd78da7c95f1b970d371e1b23cbd3aa990f3

• MPLS over UDP- insert/remove UDP/IP header on top of the MPLS pushed/popped 
label stack
• Needed when MPLS packet is tunneled over an non-MPLS IP underlay

• Packet header encapsulation as per RFC 7510 
• Kernel MPLS over UDP support - https://patchwork.ozlabs.org/patch/1173153/

• NIC offload capabilities to be addressed
• RSS handled with UDP src-port hash / TCP segmentation/Re-assembly could be a challenge on deep encap.

OVS and Kernel support for MPLSoUDP & Segment Routing

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/tree/net/mpls/internal.h#n6
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=fbdcdd78da7c95f1b970d371e1b23cbd3aa990f3
https://patchwork.ozlabs.org/patch/1173153/


Thank-you
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PCAP@OVS egress 

Src IP: VRS Dst IP: DCGW 

VNF to PNF example

IPs

MPLS labels

BSID:       50100

HV SID:   524283

SL:          524286

UDP Dst Port 6635

RFC7510: MPLSoUDP
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OVS tables for SR over UDP 

Table 13 = Routing

Table 31 = Service Label

Table 66 = Remote BGP LU SID

Table 62 = BSID

VNF to WAN endpoint example
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