
OVN issues in the field

Numan Siddique

Red Hat, Bengaluru

@numansiddique

1

AGENDA

2

● Some of the OVN issues seen in production

● How we solved or mitigated it

● How can we improve OVN further

What we’ll be discussing today

3

Deployment
● OpenStack deployment using OSP13 (Queens)

● OpenvSwitch 2.9

● OVN 2.9

● Later moved to OVN 2.12

4

ovn-controller design
(before Incremental processing)

Wait for
events

● xlate logical flows to OF flows
● Check for port bindings
● Handle packet-ins if any
● Program the new OF flows

5

ovn-controller design

Before incremental processing (I-P)

● Main while loop which handles events

● In each run
○ Translates logical flows to

OpenFlow rules - lflow_run()

○ lflow_run() is called even for
pinctrl (packet-ins) events.

 After incremental processing (I-P)

● Main while loop which handles events

● In each run
○ Translates only required logical

flows to OpenFlow rules.

○ Pinctrl events doesn’t cause flow
translation.

6

Issue #1 - ovn-controller 100% CPU
continuous reconnection to SB ovsdb-server

Cause:

● ovn-controller takes >5 seconds to process logical flows in one
run

● The IDL connection to ovsdb-server sends probes periodically.

● The default value is 5 seconds.

● If lflow_run() takes > 5 seconds, the IDL connection is closed
and reopened.

● Results in snowball effect.

Resolution:

● Increase the default probe
interval time -
ovn-remote-probe-interval

Eg. To set 180 seconds probe interval.

 ovs-vsctl set open .
external_ids:ovn-remote-probe-interval=180000

7

Issue #2 - ovn-controller 100% CPU
connection drops from ovsdb-server to its clients

Cause:

● ovn-controller takes >5 seconds to process logical flows in one
run

● ovsdb-server sends probes periodically to all its clients.

● The default value is 5 seconds.

● If lflow_run() takes > 5 seconds, the IDL connection is closed
and reopened.

● Results in snowball effect.

Resolution:

● Increase the default probe
interval time.

● ovn-sbctl set-connection
ptcp:6642:IP

To set 180 seconds probe interval.

● ovn-sbctl set connection .
inactivity_probe=180000

8

Issue #3 - ovn-controller 100% CPU
continuous reconnection to openflow connection

Cause:
● ovn-controller takes >5 seconds to process logical flows in one

run

● The openflow connection to ovs-vswitchd sends probes
periodically.

● The default value is 5 seconds.

● If lflow_run() takes > 5 seconds, the openflow connection is
closed and reopened.

● Results in snowball effect.

Resolution:
● Added a new configuration

option -
ovn-openflow-probe-interval.

Eg. To set 60 seconds probe interval.

 ovs-vsctl set open .
external_ids:ovn-openflow-probe-interval=60

9

Issue #4 - ovn-controller 100% CPU
continuous DHCP packet-ins

Cause:

● Any packet-in wakes up ovn-controller main loop.

● It calculates logical flows

● Handles the packet-in and responds.

● If the response is slow, the VIF can retransmit.

● Resulting in snowball effect.

● This issue was observed with DHCP requests (with OVN 2.9)

Resolution:

● Added a new thread in
ovn-controller - pinctrl thread to
handle packet-ins.

10

Issue #5 - ovn-controller 100% CPU
continuous ARP packet-ins

Issue:

● Periodic GARPs are received from the fabric every 10 seconds.

● Resulting in the logical flow computation.

● If lflow_run() takes > 10 seconds then 100% CPU usage.

Resolution:

● OVN 2.12 (which has incremental
processing support)

● I-P helped.

● We added new OVN actions -
lookup_arp/lookup_nd

● Send the packet to ovn-controller only if
required.

11

Issue #6 - VMs failed to spawn in some compute nodes.

Setup:
● OpenStack deployed using tripleo.

● OVN ovsdb-servers deployed in active/standby using
pacemaker and a VIP

Cause:

● OVN ovsdb-server VIP moves from one node to another (due to
failover)

● All the ovn-controllers connect to the new SB ovsdb-server.

● But some have read-only connection to SB ovsdb-server due to
bug in ovsdb-server.

● Results in transaction failovers and 100% CPU usage.

Resolution:

● Fixed the issue in ovsdb-server to
handle the existing connections’
read-only status properly.

12

Issue #7 - MAC Binding update failures.

Issue:
● Ping from one VM to another VM using its floating ip (dnat)

fails if these VMs are connected to different logical routers.

Cause:

● Same as the previous case.

● If ovn-controller which learns the mac_binding has a read-only
connection to SB ovsdb-server, mac_binding update fails.

● Also results in 100% CPU.

Resolution:

● Fixed the issue in ovsdb-server to
handle the existing connections’
read-only status properly.

13

Issue #8 - Failure in VRRP workloads

Setup:
● OpenStack deployed using tripleo.

● VRRP using keepalived.

Issue:
● When the VIP moves, OVN doesn’t update the MAC_Binding

table with the new MAC.

Cause:

● When the VIP moves, the VM sends out a GARP.

● Pinctrl thread updates the local mac_binding cache.

● Main ovn-controller thread discards the learnt mac without
updating if it is older than 1 second.

Resolution:

● Removed this time check
condition.

14

Issue #9 - Issues in conjunction flows

Issue:
● OVN generates conjunction flows from logical flows.

Eg
 match = “inport == {port group 1 } && ip4.src == {IP1, IP2, IP3} && tcp.dst >= 2000 && tcp.dst <= 3000”
action = drop

 match = “inport == {port group 1 } && ip4.src == {IP1, IP2, IP3} && tcp.dst >= 3000 && tcp.dst <= 4000”
action = allow

 OF flows:
 inport == {pg1} action=conjunction(1, 1/3)
 ip4.src == {IP1, IP2, IP3} action=conjunction(1, 2/3)
 tcp.dst >= 2000 && tcp.dst <= 3000, conjunction=(1, 3/3)
 match = conj_id=1, action = drop

 inport == {pg1} action=conjunction(2, 1/3)
 ip4.src == {IP1, IP2, IP3} action=conjunction(2, 2/3)
 tcp.dst >= 3000 && tcp.dst <= 4000, conjunction=(2, 3/3)
 match = conj_id=2, action = allow

15

Issue #9 - Issues in conjunction flows (cont)

● We resolved it by disabling conjunction in OVN.

● But this resulted in huge amount of OF rules and lflow_run()took 20x more time.

● Finally resolved the issue in OVN by generating proper OF rules

OF flows:
 inport == {pg1} action=conjunction(1, 1/3), conjunction(2, 1/3)
 ip4.src == {IP1, IP2, IP3} action=conjunction(1, 2/3), conjunction(2, 2/3)
 tcp.dst >= 2000 && tcp.dst <= 3000, conjunction=(1, 3/3)
 match = conj_id=1, action = drop
 tcp.dst >= 3000 && tcp.dst <= 4000, conjunction=(2, 3/3)
 match = conj_id=2, action = allow

16

Bottlenecks/Future Improvements

17

Improve logical flow processing
● lflow_run() takes lot of time in processing the logical flows.

● For approx. 35000 logical flows, lflow_run() takes ~10 seconds.

● We have seen setups where it takes more than 30 seconds too.

● Most of the time is spent in malloc and its friends in lib/expr.c

We need to
● Improve/rewrite expr.c

● Or cache expr parsing

● Or improve I-P engine

18

Improve Incremental Processing engine

● I-P engine can be improved further

● It triggers recomputations
○ For local ovs database changes

○ when a logical switch/logical router is created.

○ When a port is bound on the chassis

○ When a gateway chassis redirect port moves

○ ...

19

Improve debugging
● Debugging flows/tracing packets is hard.

● We need tools to visualize the logical network. (may be Skydive)

● Dumitru Ceara added few patches in this regard
○ eb25a7da639e ("Improve debuggability of OVN to OpenFlow translations.")
○ 8051499a6c1b ("ovn-detrace: Add support for other types of SB cookies.")

● And we need to add more

20

Separate pinctrl process ?

● Pinctrl thread delegates updating MAC_Binding table to the main thread

● Doesn’t access the SB DB IDL contents.

● Instead maintains a local cache of DNS table, ARP entries, IGMP entries etc

Separate process

● Having a separate process will avoid all the above. It can have its own IDL connection.

● But will increase the load on the ovsdb-server as the number of connections to SB ovsdb-server
will be (N * 2) where N is number of chassis in the deployment.

● Mark submitted a RFC patches a while bck to separate the pinctrl process.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Questions?

Thank you

21

