Policy-based Routing in OVN

Mary Manohar Sragdhara D Chaudhuri Nutanix

Outline

- What is Policy-based routing?
- Implementation in OVN
- Service-chaining
- Enhancements

What is Policy-based routing?

Traditional IP routing is destination-based.

Ability to deny, permit, reroute traffic to a different endpoint based on

- IP Source/Destination address
- IP Protocol type
- L4 Source/Destination ports
- Incoming interface (subnet) on the router

Every policy has a priority value associated with it.

Policy with the highest priority wins.

Why Policy-based Routing?

- Service-insertion on the router.
 - Override routing decision to reroute certain types of traffic to services like firewall or VPN.
- Permit/deny rules on router.

Example network

Destination-based routing

Policy-based Routing - L3 service insertion

priority: 10 src-ip: Subnet-1 dst-ip: Subnet-2 reroute-to: FW-VM

Packet redirected to FW-VM

priority: 10 src-ip: Subnet-1 dst-ip: Subnet-2 reroute-to: FW-VM

Packet coming back from firewall

priority: 10 src-ip: Subnet-1 dst-ip: Subnet-2 reroute-to: FW-VM

priority: 20 inport: Firewall-interface src-ip: Subnet-1 dst-ip: Subnet-2 permit —> Higher priority priority: 10 src-ip: Subnet-1 dst-ip: Subnet-2 reroute-to: FW-VM

Packet coming back from firewall

Implementation in OVN

Destination-based routing in OVN router pipeline

ITO:	L2 Admission Control
IT1:	IP Input
IT2:	Defrag
IT3:	UNSNAT
IT4:	DNAT
IT5:	IP Routing
IT6:	ARP/ND Resolution
IT7:	Gateway Redirect
IT8:	ARP Request

ETO:	UNDNAT
ET1:	SNAT
ET2:	Egress Loopback
ET3:	Delivery

Policy-based routing implementation

Standard OVN

Router Pipeline

ITO:	L2 Admission Control					
IT1:	IP Input					
IT2:	Defrag					
IT3:	UNSNAT					
IT4:	DNAT					
IT5:	IP Routing					
IT6:	ARP/ND Resolution					
IT7:	Gateway Redirect					
IT8:	ARP Request					
ETO:	UNDNAT					
ET1:	SNAT					
ET2:	Egress Loopback					
ET3:	Delivery					

ITO:	L2 Admission C
IT1:	IP Input
IT2:	Defrag
IT3:	UNSNAT
IT4:	DNAT
IT5:	IP Routing
IT6:	Policy-Based Ro
IT7:	ARP/ND Resolu
IT8:	Gateway Redire
IT9:	ARP Request

ETO:	UNDNAT			
ET1:	SNAT			
ET2:	Egress Loopbac			
ET3:	Delivery			

Modified OVN Router Pipeline

Policy-based overrides destination-based routing

ITO:	L2 Admission Control
IT1:	IP Input
IT2:	Defrag
IT3:	UNSNAT
IT4:	DNAT
IT5:	IP Routing
IT6:	Policy-Based Routing
IT7:	ARP/ND Resolution
IT8:	Gateway Redirect
IT9:	ARP Request

ETO:	UNDNAT
ET1:	SNAT
ET2:	Egress Loopback
ET3:	Delivery

Implications: Packets coming to Floating IPs

ITO:	L2 Admission Control
IT1:	IP Input
IT2:	Defrag
IT3:	UNSNAT
IT4:	DNAT
IT5:	IP Routing
IT6:	Policy-Based Routing
IT7:	ARP/ND Resolution
IT8:	Gateway Redirect
IT9:	ARP Request

ETO:	UNDNAT
ET1:	SNAT
ET2:	Egress Loopback
ET3:	Delivery

- SNAT IPs are changed to private IPs here
- Floating IPs are changed to private IPs here
- Floating IPs / SNAT IPs are not visible here

New pipeline stage

IP-Routing table carries destination-based routes.

New table overrides the routing decision based on policies.

In the example:

- Traffic **to** the firewall was forwarded based on policies. •
- Return traffic **from** firewall was forwarded based on IP-Routing table. •

Ovn-nbctl commands

Add a policy

A policy is uniquely identified by <priority, match-string>

ovn-nbctl lr-policy-add	ROUTER	PRIORITY	МАТСН	ACTION	[NE
Action: Permit/drop/reroute					

Example:

ovn-nbctl lr-policy-add	lr1	10	"ip4.src == 1.1.1.0/24"	drop
ovn-nbctl lr-policy-add	lr1	10	"ip4.src == 2.2.2.0/24"	drop

EXTHOP]

Ovn-nbctl commands

Delete a policy:

ovn-nbctl lr-policy-del ROUTER [PRIORITY [MATCH]]

Priority and match string are **optional** parameters.

<ROUTER, PRIORITY, MATCH>: the exact policy is deleted.

<ROUTER, PRIORITY>: All policies with given priority are deleted.

<ROUTER>: ALL policies under ROUTER are deleted.

Ovn-nbctl commands

List policies:

ovn-nbctl lr-policy-list **ROUTER**

- ip4.dst==12.2.1.0/24 && ip4.src==11.2.1.0/24 && inport=="lrp-1" allow 611
- ip4.dst==12.2.1.0/24 && ip4.src==11.2.1.0/24 610
- ip4.dst==0.0.0.0/0 && ip4.src==0.0.0.0/0 600

reroute drop

13.2.1.12

TTL Handling

The new pipeline stage will not decrement the TTL.

TTL is decremented in the IP-Routing stage.

Service Chaining

priority: 30 inport: LB-interface src-ip: Subnet-1 dst-ip: Subnet-2 permit priority: 20 inport: Firewall-interface src-ip: Subnet-1 dst-ip: Subnet-2 reroute-to: LB-VM priority: 10 src-ip: Subnet-1 dst-ip: Subnet-2 reroute-to: FW-VM

src-ip: ?? dst-ip: Subnet-1 reroute-to: FW-VM

Source-IP: All IPs that don't belong to any subnets attached to logical-router.

priority: 20 inport: Firewall-interface dst-ip: Subnet-1 permit

priority: 10 inport: External-interface dst-ip: Subnet-1 reroute-to: FW-VM

Service chaining - special case

All traffic to Subnet-1 goes through Firewall.

Traffic coming from External goes through Firewall and IDS.

Service chaining - special case

priority: 20 **inport:** Firewall-interface **src-ip:** ?? **dst-ip:** Subnet-1 **reroute-to:** IDS-VM <— How to identify traffic coming from 'External'?

priority: 10 src-ip: 0.0.0/0 dst-ip: Subnet-1 reroute-to: FW-VM

All traffic to Subnet-1 goes through

Traffic coming from External goes to Firewall and IDS.

Need for address-sets support

'External' - All IPs that don't belong to any subnets attached to logical-router. Need a way of marking subnets attached to logical router.

ovn-nbctl create Address_Set name=set1 addresses={internal-ips} —> Already supported.

ovn-nbctl create Address_Set name=set1 addresses={internal-prefixes} -> Could be an enhancement

priority: 40 inport: IDS-interface permit

priority: 30 inport: Firewall-interface src-ip: \$set1 dst-ip: Subnet-1 permit <--- Local traffic to Subnet-1 priority: 20 inport: Firewall-interface src-ip: 0.0.0/0 dst-ip: Subnet-1 reroute-to: IDS-VM <--- External traffic priority: 10 src-ip: 0.0.0/0 dst-ip: Subnet-1 reroute-to: FW-VM

Enhancements

Enhancements

- Logging •
- Stateful policies •
- ECMP for next-hop Example: Pool of firewall VMs •
- Address-sets: in match string for ip4.src and ip4.dst •
- In addition to setting the next-hop, set fields in the packet like DSCP: For Gateway router to classify • traffic and treat with different QoS.

Thank you

