Sylvain Baubeau
Red Hat

®OvS

Open vSwitch

Skydive, a Real-Time Network Analyzer

Why ?

* SDN is complex

* Highly dynamic

* Lack of open source tooling for troubleshooting

Goals

* SDN agnostic

* Real-time / post-mortem network analysis framework

* Lightweight, easy to deploy

Overview

* Distributed

* Single binary

* Agents
- Capture topology and flows
- Forwards to the analyzers

* Analyzers
- Aggregate and store topology and flows
- Serve API

Topology probes

* OVS objects
- bridge, port, interfaces
- using OVSDB

* Network objects
- Interfaces, bridges, bonds, VLAN, ...
- Properties (MAC, IP, MTU, Statistics, ...)
- Network namespaces
- Static objects

Topology probes

* External connectors
- Docker
- OpenStack Neutron
- OpenContrall

* Create a graph:
- Nodes : interfaces, network objects with metadata
- Links : L2, ownership, membership, ...

Topology query

* Graph engine
* Event based

- Graph listener through WebSocket (agents, Web Ul, your
software)

* Gremlin like query language
* Full history

Topology query

* $ skydive client topology query -g 'G.V () .Has("Type",
"ovsbridge") .Out () .Out () .Has ("Name", Without ("br-int"))
[{ "Host": "localhost.localdomain",
"ID": "al9%0409%e-f76e-4c8f-55b9-985e662a37c0",
"Metadata": {

"Driver": "veth",
"TfIndex": 168,

"MAC": "3e:88:09:65:04:7e",
"MTU": 1500,

"Name": "vml-ethO",
"State": "UP",

"Type": "veth",

"UUID": "b6e9bf79-9b58-4b65-800e-1ddf9909d9dc™ }1}]

Topology probes

* 2 VMS with the Skydive agent
* Oneach VM
* 2 physical interfaces connected to a TOR
* A network namespace
* A pair of veth
* Connected to an OVS bridge « br-int »
* A GRE tunnel between the nodes

\What we call a flow

* Layers:
- Link, Network, Transport

* Metrics (packets, bytes)
* Source and destination

* ID, Tracking ID
* Encapsulation support (GRE, VXLAN, MPLS)

Flow capture

* Captures
- OVS (sFlow)
- AFPackets
— libpcap
- eBPF
- NDPI

Flows

* Defined capture using the Skydive API

* Traffic is captured on the agent

* Stored into a local flow table

* Push metrics about live and updated flows to the
analyzer

* Map endpoints to known interfaces

* Stored into database

Flows

« Still the same Gremlin language
... and the history

* Examples of Gremlin queries
- g.Flows().Has('TrackingID’, “123").Hops()
- g.Flows().Has(‘Network.A’, “192.168.0.1").Hops()
- g.Context("An hour ago”).V().Has('Name’, ‘br-
int’).Flows().Count()

Use cases

* Validation
* Troubleshooting
* Detection network issues
- Packet loss
- Fragmentation
- Bad performance, congestion points
* Post mortem analysis

Use cases

* Monitoring

- Grafana plugin

- Alarming
* Capacity planning

- Schedule services at the best place
* Billing

Flow demo

* Same topology than the previous demo

* GRE tunnels

* Create capture points

* Generate traffic

* Follow traffic in the tunnel

* Skydive analyzer on my laptop with Elasticsearch

Flow demo

* Same topology than the previous demo

* GRE tunnels

* Create capture points

* Generate traffic

* Follow traffic in the tunnel

* Skydive analyzer on my laptop with Elasticsearch

Quickstart

* Executable
- # skydive allinone
* Docker
— docker-compose up
* Kubernetes
- Kkubectl create -f contrib/kubernetes/skydive.yaml
* Devstack plugin

Community

* Apache License
* https://agithub.com/skydive-project/skydive
* Written in Go

* (Good?) Documentation

https://github.com/skydive-project/skydive

Questions ?

* IRC : #skydive-project @ freenode.net

* Mailing list : skydive-dev@redhat.com

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

