OVS Hardware offloads
Discussion Panel

Joe Stringer
VMware

OVS caching model

Datapath
Interface (dpif)

WIS First packet
Subsequent packets

Datapath

T
e
!

L]
lllllll

Partial Offload

T
e

hint T
hint) .
a-a[LOOkup H . . -

Full Offload

T
e

q-#-#- . . - -#
A ;

Datapath implementations

TC
--

Flow offloads

SoftFlow TCAM Offload

—than J. Jackson

Tradeoft

e Pure Software
e Highly Flexible
o Slow

» Full Hardware Oftload
e Rigid

e [ast

Key Insignt

» Vast Majority of CPU time spend on packet classification
* S0, let’s just offload packet classitication

e Much faster

o Still Highly Flexible

Implementation

Treat NIC as an additional Flow Cache

Assign megaflows an ID

Offload frequently used megaflows to the NIC
NIC writes the |ID to packet metadata (if matched)

Software checks the match was correct

summary

e Significant performance improvement
* 5% - 90%

o Without compromising software flexibility
* Tolerant of limited hardware TCAM size

* Evolve software features without requiring hardware changes

ORACLE
@ PayPal ©utorain

s "‘ SALESPREDICT
) SRedaTiun maves wamTenn o

i
=" . mongoDB

ASAPZ - NIC HW Acceleration for Open-vSwitch

TECHNOLOGIES

Connect. Accelerate. Qutperform.”

Rony Efraim

Accelerated Switch And Packet Processing (ASAP?)

Mellanox

= ASAP? takes advantage of ConnectX-4 capability to accelerate \ offload “in host” network stack
= Two main use cases:

ASAP? Direct ASAP? Flex
Full vSwitch offload (SR-IOV) vSwitch acceleration

Uied ejeq
04

ConnectX 4@

© 2016 Mellanox Technologies 2

i\

Mellanox

EEEEEEEEEEEE

Full Virtual Switch Offload

ASAP2-Direct

Software based VS Hardware based

Mellanox

TECHHNOLOGIES

Traditional Model: All Software ConnectX-4: Hardware Offload
High Latency, Low Bandwidth, CPU Intensive Low Latency, High Bandwidth, Efficient CPU

OVS-vswitchd OVS-vswitchd

User Space User Space
Kernel Kernel
OVS Kernel Module OVS Kernel Module
Hardware
ConnectX-4 eSwitch
== First flow packet Fallback FRWD path e HW forwarded Packets

© 2016 Mellanox Technologies 4

Policy Based Offloading

Mellanox

TECHHNOLOGIES

= Changes are made only in the OVS
user space code (No OVS kernel
datapath module changes) ofproto -~ ey

= Plugin a new DPIF module
 Same Northbound APIs

ovs-vswitchd -g—— P> ovsdb-server

netdev ofproto-dpif

e Same Southbound APIs in most cases netdev provider e i
 Add “HW offload test ...” APIs offload #
- Concentrate the Policy code in a specific SW T
module &
. . dpif Netlink o)
- Policy can decide on * Y
HW ONLY/ NO OFFLOAD/ SPLIT” S SRS R SR g; ______
erne %
Code is on the OVS ML S =
 Codeis onthe / v
http://openvswitch.org/pipermail/dev/2016- Netev Netz.gev/Ne,c T cwitch dev
November/081141.html ~ Kemel____T[___1 I —— 1 T padke
HW —VE VE configurationr——
. gal , e . Mellanox added SW

eSwitch (datapath)
© 2016 Mellanox Technologies 5

i\

Mellanox

EEEEEEEEEEEE

Accelerated Virtual Switch

ASAP?-Flex

Concept

Mellanox

= Every switch (virtual or physical) has a notion of “packet processing pipeline”

* (Push/pop vlan, Tunnel Encap/decap operations, QoS related functionality: (Metering, Shaping, Marking,
Scheduling), Switching action)

= Typical ingress pipeline of a virtual switch can be:

Classify E=—=p Decapsulate —=—p QoS ——) Switch Decision =) TX

" ASAP?-Flex is a framework to offload part of the packet processing — one or more
pipeline stages, onto the NIC HW engines

= the switching decision and Tx operation are left to the SW based dataplane

= Paravirt VMs will enjoy HW offload while actual switching decisions is done by OVS
SW

© 2016 Mellanox Technologies 7

openVswitch using HW classification

Mellanox

TECHHNOLOGIES

= For every OVS flow DP-if should use the DPDK

i : : i) OVS-vswitchD
filter (or TC) to classify with Action tag (report id) -

or drop.

= When receive use the tag id instead of classify the
packet

= for Example :

* OVS set action Y to flow X
- Add a flow to tag with id 0x1234 for flow X
- Config datapath to do action Y for mbuf->fdir.id = 0x1234 OVS DataPath
 OVS action drop for flow Z
- Use DPDK filter to drop and count flow Z
- Use DPDK filter to get flow statistic

DP_IF - DPDK

Flow X mark with id

mbuf->fdir.id 0x1234 Do
0x1234

OVS action Y

User

Hardware

Packets flow

Config flow «

© 2016 Mellanox Technologies 8

DPDK support

Mellanox

= DPDK uses Flow filters

= All current flow filters are either “fixed” or “RAW”
* No filter support 12 tuple
* No filter support different mask (mega flows)
* No counter per flow , required for drop.

= Work in progress:
* Define new filter type (RTE_ETH_FILTER_GENERIC)
* Define Flow spec fields as a TLV
* Define list of Actions for a matched Packet (as a TLV)
- Flow _tag, Drop, count etc...
* For more info: https://rawgit.com/6WIND/rte_flow/master/rte flow.pdf

© 2016 Mellanox Technologies 9

ORACLE
@ PayPal Sutbrain
u 's 7, SALESPREDICT

— . mongoDB

Thank You Mellanox

Connect. Accelerate. Qutperform.”

NS NETRONCIME

‘I oVs Fall Conference
| HW Offload Panel

Nic Viljoen - 7 November 2016

Considerations | NETRONGME

Hardware
Low power fully programmable 72 core SmartNIC with 576 cooperatively multiplexed threads
TCO (6x reduction) case for acceleration-more VM instances, higher throughput, lower latency
Current OVS offload approach: kernel datapath (megaflow / dpif) level, with/without conntrack
Feature rich ‘Full Offload’ - offloads almost all OVS matching / actions, incl. tunnels and conntrack
Fallback path (selective acceleration) improves compatibility and maintainability
Ready for eBPF based OVS in future
Netronome have implemented transparent eBPF offload (for XDP and TC) upstream in Linux
Requirements

Acceleration should be transparent and feature rich without unduly limiting capacities and update rates
+ Full offload would include match/action, tunnels, load balancing, traffic mirroring, QoS

Should support selective acceleration (fallback path)

Needs to support stateful firewalling (conntrack)

Discussions of proposed approaches and architectures are ongoing in the community - please participate

© 2016 NETRONOME 2

Offload Model: OVS Kernel Datapath | NETRONGME

x86 Userspace

(Nova, Neutron) oVS CLI Cﬂgﬁ"e

| |

~ | I

Ty u | |

Ope nStaCk M Open vSwitch Subsystem } } Virtual Machine

~ | |

. |
\\\‘ i 1
OPEN o~ }
— N Apps
B DAYLIGHT |~ . OVS Agent ! il

B | e e B Openfiow =

netdev or DPDK netdev or DPDK

x86 Kernel b II II

- :
Kemel D Exeoute Iy (g SR-IOV/ SR-IOV /
erne ction [3
1 Configuration via controller, CLI, or Callable AP! Match/Act . Vvirtlo VFs VirtlO VFs
2 OVS userspace agent populates kernel cache II I II I I I I I I I I I I I I “ I I I I I I I PCle
y
3 Offload datapath: copy match tables, sync stats Agilio Intelligent Server /
Adapter (NIC) .
Open vSwitch Datapath

4 Flow tracking: per-microflow state learning i Execute Action 5

Self Learning [YES] Gk (e.g. Entunnel,

Exact Match e '<crnel DP Deliver to VM,
5 Offload connection tracking: synchronize state ~ <t==>| Flow Tracker et Send to Port)
6 Datapath extension software 4

© 2016 NETRONOME — DRAFT 3

Offload Model: Performance

| NETRONOGME

Ericsson Cloud SDN with OVS
in User Space and Traditional NIC

Rack Throughput: 72Mpps
Applications per Rack: 360

TOR

([Server

NIC Server

NIC Server

NIC Server
NIC Server

NIC Server
NIC Server
NIC Server
NIC Server

NIC Server

NIC Server
NIC Server

NIC Server

Server Core Allocation

VMs or

containers
20 cores

18 applications at 300Mbps/200Kpps each

Racks needed to support 2200 VNFs
[o e W e e e e
TS T T T TS TS
[me s e seow Wwe s Wme v Jme sew e seve e
CEETE T T O T T T
CEETE CEETE TS TS T TS
T T T EETTE T T
T TS TS TS T T
TS CEETE TS TS [T s
CECTa CEETs DT T O O
CEETE CEETE TS TS TS T
T CEETE CEETE O T O
CEECE T O T T CEETE T
CEEDE CEETE CEETE T T T
TR CEETE TN DT T T

Ericsson Cloud SDN with OVS
Running on Netronome Agilio Platform

Rack Throughput: 440Mpps
Applications per Rack: 2200

TOR

Server Core Allocation

Server
Server

VMs or

containers
23 cores

Agilio Server

Server
Server

: 110 applications at 300Mbps/200Kpps each
Server

Agilio Server
Racks needed to support 2200 VNFs

6X |

Agilio Server
Agilio Server
Agilio Server

Server
Server LOWER TCO
Server

© 2016 NETRONOME — DRAFT

Offload Model: eBPF Acceleration

e program
______ > type (sk filter, kprobe, cls, xdp) tc XDP
. . ° license ctrl
user space : *))
—————— BPF:syscaII T e T T T T T T T T T T T T
kernel space s s s fd, . fd,
. fd .
v BPF o
verifier prog
cls_bpf
translation ’ .
. offload .
verification hoi‘”T .
modification | | = = = = = - ' :
HW JIT / ndo \ Al e
setup river
translator tc RX path | XDP TX path

© 2016 NETRONOME

Summary | NETRONGME

Our priority is finding both a short term and long term solution to OVS working
harmoniously with the kernel

Short term - OVS kernel datapath acceleration
Long term - accelerate eBPF, supporting eBPF based OVS?
Our priority is ensuring that we are able to provide:

« ‘Full Offload’, i.e the ability to offload almost all if not all OVS match/actions and
tunneling

 Per packet fallback path
« Conntrack
 High flow capacities and high update rates

© 2016 NETRONOME

Thank You

Virtual Switch Datapath
“Accelerators”

John Fastabend
Intel

Pantheon of Languages

Machine Model : CPU

I/O Devices

OPEN VSWITCH

An Open Virtual Switch

Pantheon of Languages

Machine Model : CPU

I/O Devices

SSE
AVX

FMA

TSO
Flow Control
CSUM_OFFLOAD

CTAG, STAG, ... DDIO

commit ce8c839b74e3017996fad4elb7ba2e2625ede82f

Author: Vijay Pandurangan <vijayp@vijayp.ca>
Date: Fri Dec 18 14:34:59 2015 -0500

veth: don<E2><80><99>t modify ip_summed; doing so treats packets with bad checksums as good.

Packets that arrive from real hardware devices have ip_summed ==
CHECKSUM_UNNECESSARY if the hardware verified the checksums, or
CHECKSUM_NONE if the packet is bad or it was unable to verify it. The

current version of veth will replace CHECKSUM_NONE with
CHECKSUM_UNNECESSARY, which causes corrupt packets routed from hardware to
a veth device to be delivered to the application. This caused applications

at Twitter to receive corrupt data when network hardware was corrupting

packets.

We believe this was added as an optimization to skip computing and
verifying checksums for communication between containers. However, locally

generated packets have ip_summed == CHECKSUM_PARTIAL, so the code as
written does nothing for them. As far as we can tell, after removing this

code, these packets are transmitted from one stack to another unmodified

(tcpdump shows invalid checksums on both sides, as expected), and they are
delivered correctly to applications. We didn<E2><80><99>t test every possible network
configuration, but we tried a few common ones such as bridging containers,

using NAT between the host and a container, and routing from hardware

devices to containers. We have effectively deployed this in production at

Twitter (by disabling RX checksum offloading on veth devices).

This code dates back to the first version of the driver, commit
<e314dbdclc0dc6a548ecf> ("[NET]: Virtual ethernet device driver"), so |
suspect this bug occurred mostly because the driver API has evolved

significantly since then. Commit <Ob7967503dc97864f283a> ("net/veth: Fix
packet checksumming") (in December 2010) fixed this for packets that get
created locally and sent to hardware devices, by not changing
CHECKSUM_PARTIAL. However, the same issue still occurs for packets coming
in from hardware devices.

Co-authored-by: Evan Jones <ej@evanjones.ca>
Signed-off-by: Evan Jones <ej@evanjones.ca>

Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com>

Cc: Phil Sutter <phil@nwl.cc>

Cc: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Cc: netdev@vger.kernel.org

Cc: linux-kernel@vger.kernel.org

Signed-off-by: Vijay Pandurangan <vijayp@vijayp.ca>
Acked-by: Cong Wang <cwang@twopensource.com>
Signed-off-by: David S. Miller <davem@davemloft.net>

Pantheon of Languages

Machine Model : CPU

I/O Devices

SSE
AVX

FMA

TSO
Flow Control
CSUM_OFFLOAD

CTAG, STAG, ... DDIO

Pantheon of Languages

Machine Model : CPU

I/O Devices

OPEN VSWITCH

An Open Virtual Switch

Languages
Verifiers

Formal models

Runtime Environments

Encryption

Vtd/VTx

SIMD
EBPF / XDP
Data Structures
Flow
Classification
P4

NPU/FPGA i

Discussion

