

OVS Hardware offloads
Discussion Panel

Joe Stringer
VMware

OVS caching model

ofproto

datapath

First packet
Subsequent packets

Datapath
interface (dpif)

Datapath

Upcall

ActionActionPre-classify Lookup

Partial Offload

Upcall

Pre-classify ActionActionLookup
hint

hint

Action

Full Offload

Upcall

Pre-classify Lookup ActionAction

Datapath implementations

eBPF

ofproto

User
Mode

DPIF

Linux
OVS

TC
flower

eBPF

Flow offloads

ofproto

User

DPIF

Linux
OVSPartial

Full
(flower)Partial

HWIF

TC
flower

Full
(eBPF)

Full
(OVS)

SoftFlow TCAM Offload
Ethan J. Jackson

Tradeoff
• Pure Software

• Highly Flexible

• Slow

• Full Hardware Offload

• Rigid

• Fast

Key Insight

• Vast Majority of CPU time spend on packet classification

• So, let’s just offload packet classification

• Much faster

• Still Highly Flexible

Implementation
• Treat NIC as an additional Flow Cache

• Assign megaflows an ID

• Offload frequently used megaflows to the NIC

• NIC writes the ID to packet metadata (if matched)

• Software checks the match was correct

Summary
• Significant performance improvement

• 5% - 90%

• Without compromising software flexibility

• Tolerant of limited hardware TCAM size

• Evolve software features without requiring hardware changes

Rony Efraim

Open vSwitch 2016 Fall Conference

ASAP2 - NIC HW Acceleration for Open-vSwitch

© 2016 Mellanox Technologies 2

 ASAP2 takes advantage of ConnectX-4 capability to accelerate \ offload “in host” network stack

 Two main use cases:

Accelerated Switch And Packet Processing (ASAP2)

ASAP2 Direct

Full vSwitch offload (SR-IOV)

ASAP2 Flex

vSwitch acceleration

© 2016 Mellanox Technologies 3

ASAP2-Direct

Full Virtual Switch Offload

© 2016 Mellanox Technologies 4

Software based VS Hardware based

OVS-vswitchd

OVS Kernel Module

User Space

Kernel

OVS-vswitchd

OVS Kernel Module

User Space

Kernel

ConnectX-4 eSwitch
Hardware

Traditional Model: All Software

High Latency, Low Bandwidth, CPU Intensive

ConnectX-4: Hardware Offload

Low Latency, High Bandwidth, Efficient CPU

First flow packet Fallback FRWD path HW forwarded Packets

© 2016 Mellanox Technologies 5

Policy Based Offloading

ovs-vswitchd

ofproto

ofproto-dpifnetdev

dpif

dpif Netlink

NIC

ovsdb-server

OpenFlow
controller

eSwitch (datapath)

vPorts

A
dd/del/stats flow

datapath

 packets

 configuration

NetDev n
NetDev

2
NetDev

1

VF
1

PF
VF
2

netdev provider

Mellanox added SW

User
Kernel

dpif provider
dpif- HW acc

HW_policy

TC

HW
offload ?

Switch dev

Kernel
HW

Generic added SW

 Changes are made only in the OVS

user space code (No OVS kernel

datapath module changes)

 Plugin a new DPIF module

• Same Northbound APIs

• Same Southbound APIs in most cases

• Add “HW_offload_test_...” APIs

- Concentrate the Policy code in a specific SW

module

- Policy can decide on “

HW ONLY/ NO OFFLOAD/ SPLIT”

• Code is on the OVS ML

http://openvswitch.org/pipermail/dev/2016-

November/081141.html

© 2016 Mellanox Technologies 6

ASAP2-Flex

Accelerated Virtual Switch

© 2016 Mellanox Technologies 7

Concept

Every switch (virtual or physical) has a notion of “packet processing pipeline”
• (Push/pop vlan, Tunnel Encap/decap operations, QoS related functionality: (Metering, Shaping, Marking,

Scheduling), Switching action)

 Typical ingress pipeline of a virtual switch can be:

ASAP2-Flex is a framework to offload part of the packet processing – one or more

pipeline stages, onto the NIC HW engines

 the switching decision and Tx operation are left to the SW based dataplane

Paravirt VMs will enjoy HW offload while actual switching decisions is done by OVS

SW

Classify Decapsulate QoS Switch Decision TX

© 2016 Mellanox Technologies 8

Packets flow

PMD

NIC
Hardware

User

OVS DataPath

OVS-vswitchD

F_DIR

Flow X mark with id

0x1234
mbuf->fdir.id 0x1234 Do

OVS action Y

DP_IF - DPDK

Config flow

openVswitch using HW classification

 For every OVS flow DP-if should use the DPDK

filter (or TC) to classify with Action tag (report id)

or drop.

 When receive use the tag id instead of classify the

packet

 for Example :

• OVS set action Y to flow X

- Add a flow to tag with id 0x1234 for flow X

- Config datapath to do action Y for mbuf->fdir.id = 0x1234

• OVS action drop for flow Z

- Use DPDK filter to drop and count flow Z

- Use DPDK filter to get flow statistic

© 2016 Mellanox Technologies 9

DPDK support

DPDK uses Flow filters

All current flow filters are either “fixed” or “RAW”

• No filter support 12 tuple

• No filter support different mask (mega flows)

• No counter per flow , required for drop.

Work in progress:

• Define new filter type (RTE_ETH_FILTER_GENERIC)

• Define Flow spec fields as a TLV

• Define list of Actions for a matched Packet (as a TLV)

- Flow_tag, Drop, count etc…

• For more info: https://rawgit.com/6WIND/rte_flow/master/rte_flow.pdf

Thank You

© 2016 NETRONOME

Nic Viljoen - 7 November 2016

OVS Fall Conference
HW Offload Panel

2© 2016 NETRONOME

Considerations

Hardware
▶ Low power fully programmable 72 core SmartNIC with 576 cooperatively multiplexed threads
▶ TCO (6x reduction) case for acceleration-more VM instances, higher throughput, lower latency

Current OVS offload approach: kernel datapath (megaflow / dpif) level, with/without conntrack
▶ Feature rich ‘Full Offload’ - offloads almost all OVS matching / actions, incl. tunnels and conntrack
▶ Fallback path (selective acceleration) improves compatibility and maintainability

Ready for eBPF based OVS in future
▶ Netronome have implemented transparent eBPF offload (for XDP and TC) upstream in Linux

Requirements

▶ Acceleration should be transparent and feature rich without unduly limiting capacities and update rates
• Full offload would include match/action, tunnels, load balancing, traffic mirroring, QoS

▶ Should support selective acceleration (fallback path)
▶ Needs to support stateful firewalling (conntrack)

Discussions of proposed approaches and architectures are ongoing in the community - please participate

© 2016 NETRONOME — DRAFT

Offload Model: OVS Kernel Datapath

3

© 2016 NETRONOME — DRAFT

Offload Model: Performance

4

© 2016 NETRONOME

Offload Model: eBPF Acceleration

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

driver

modification

RX path TX pathXDP

XDP
ctrl

ndo
setup

tc

offload
object

fd, skip_* flags

HW JIT /
translator

translation

verification

fd, skip_* flags

BPF
prog

6© 2016 NETRONOME

Summary

Our priority is finding both a short term and long term solution to OVS working
harmoniously with the kernel

▶ Short term - OVS kernel datapath acceleration
▶ Long term - accelerate eBPF, supporting eBPF based OVS?
▶ Our priority is ensuring that we are able to provide:

• ‘Full Offload’, i.e the ability to offload almost all if not all OVS match/actions and
tunneling

• Per packet fallback path
• Conntrack
• High flow capacities and high update rates

© 2016 NETRONOME

Thank You

Virtual Switch Datapath
“Accelerators”

John Fastabend
Intel

Pantheon of Languages

Machine Model : CPU

I/O Devices

Pantheon of Languages

Machine Model : CPU

I/O Devices

TSO

CSUM_OFFLOAD

CTAG, STAG, ...

Flow Control

DDIO

SSE

AVX

FMA

commit ce8c839b74e3017996fad4e1b7ba2e2625ede82f
Author: Vijay Pandurangan <vijayp@vijayp.ca>
Date: Fri Dec 18 14:34:59 2015 -0500

 veth: don<E2><80><99>t modify ip_summed; doing so treats packets with bad checksums as good.

 Packets that arrive from real hardware devices have ip_summed ==
 CHECKSUM_UNNECESSARY if the hardware verified the checksums, or
 CHECKSUM_NONE if the packet is bad or it was unable to verify it. The
 current version of veth will replace CHECKSUM_NONE with
 CHECKSUM_UNNECESSARY, which causes corrupt packets routed from hardware to
 a veth device to be delivered to the application. This caused applications
 at Twitter to receive corrupt data when network hardware was corrupting
 packets.

 We believe this was added as an optimization to skip computing and
 verifying checksums for communication between containers. However, locally
 generated packets have ip_summed == CHECKSUM_PARTIAL, so the code as
 written does nothing for them. As far as we can tell, after removing this
 code, these packets are transmitted from one stack to another unmodified
 (tcpdump shows invalid checksums on both sides, as expected), and they are
 delivered correctly to applications. We didn<E2><80><99>t test every possible network
 configuration, but we tried a few common ones such as bridging containers,
 using NAT between the host and a container, and routing from hardware
 devices to containers. We have effectively deployed this in production at
 Twitter (by disabling RX checksum offloading on veth devices).

 This code dates back to the first version of the driver, commit
 <e314dbdc1c0dc6a548ecf> ("[NET]: Virtual ethernet device driver"), so I
 suspect this bug occurred mostly because the driver API has evolved
 significantly since then. Commit <0b7967503dc97864f283a> ("net/veth: Fix
 packet checksumming") (in December 2010) fixed this for packets that get
 created locally and sent to hardware devices, by not changing
 CHECKSUM_PARTIAL. However, the same issue still occurs for packets coming
 in from hardware devices.

 Co-authored-by: Evan Jones <ej@evanjones.ca>
 Signed-off-by: Evan Jones <ej@evanjones.ca>
 Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com>
 Cc: Phil Sutter <phil@nwl.cc>
 Cc: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
 Cc: netdev@vger.kernel.org
 Cc: linux-kernel@vger.kernel.org
 Signed-off-by: Vijay Pandurangan <vijayp@vijayp.ca>
 Acked-by: Cong Wang <cwang@twopensource.com>
 Signed-off-by: David S. Miller <davem@davemloft.net>

Pantheon of Languages

Machine Model : CPU

I/O Devices

TSO

CSUM_OFFLOAD

CTAG, STAG, ...

Flow Control

DDIO

SSE

AVX

FMA

Pantheon of Languages

Machine Model : CPU

I/O Devices

SR-IOV

NPU

Pantheon of Languages

Machine Model : CPU

I/O Devices

Flow
Classification

P4

NPU/FPGA

Encryption

SIMD

Data Structures

Vtd/VTx

EBPF / XDP

Languages

Verifiers

Formal models

Runtime Environments

tc

Discussion

