
Scaling the OVN Control Plane in OVS 2.6.0
Liran Schour, Ryan Moats



Topics

• Conditional Monitoring
• Wire Protocol Optimization
• Incremental Processing
• Open Need



OVN architecture

Northbound	DB

Southbound	DB

northd

Compute Node	1	

OVS

OVN-Controller

Compute Node	N	

OVS

OVN-Controller

CMS	(	Neutron	)

………….

Define	logical	
network	topology

Update	SB	tables

Update	each	HV	on	any	
change	(ovn-controller)

REDUNDANT
FLOWS

HIGH	
PROCESSING	
OVERHEAD



Conditional monitoring

Northbound	DB

Southbound	DB

northd

Compute Node	1	

OVS

OVN-Controller

Compute Node	N	

OVS

OVN-Controller

CMS	(	Neutron	)

………….

Define	logical	
network	topology

Update	SB	tables
Update	only	HVs	that	match	
conditions	(ovn-controller)

VM1

Add	VM1’s	network	to	conditionAdd	VM2’s	network	to	condition

VM2



OVSDB protocol extension

Add to the OVSDB protocol the following requests:
• monitor_cond:

Allows clients to start a conditional monitor session
• monitor_cond_change:

Allows clients to iteratively change the conditions of the 
monitor session



API usage

ovsdb_idl_add_clause_false(idl, tableA); // Start with empty table

while (1) {
ovsdb_idl_loop_run(idl);
...
ovsdb_idl_add_clause(idl, tableA, clause1);
...
ovsdb_idl_loop_commit_and_wait(idl);

}

OVN	patch	– 250~	
lines	of	code



Total CPU Cycles Count

• # of Flows:
– Patch

Logical flows = 5010
• Host 1 # flows 835
• Host 2 # flows 927

…
• Host 50 # flows 1111

– Master
Logical flows = 5010
• Host 1 # flows 5793
• Host 2 # flows 5819

…
• Host 50 # flows 5871



Host CPU utilization SB-server CPU utilization

CPU Usage Comparison



Influence of network spread over DC on SB



Wire protocol optimization

• OVSDB protocol options for changing data
– Read-modify-write

• Transmits entire row state from client to server for verification 
to avoid dirty reads

– Mutate
• Only transmits row deltas



OVS

• Extend HPE’s partial 
map update contribution 
to cover partial sets

• Expose partial set 
update capability in 
Python IDL

CMS

• Call new partial set 
update capability

How to get there



What does it buy us?

• Rally test adding ports to 
a local switch and ACL 
entries

• Sniff protocol stream 
from CMS to OVN NB 
DB



Another data point

• CMS: OpenStack Neutron+networking-ovn (Newton)
• Test: Time taken to launch 10 instances from Horizon

• Using read-modify-write: 60 seconds
• Using partial set updates: 37 seconds 

• ~40% improvement



Incremental Processing

• OVN controller process performs a full recalculation of all 
OVS flows each pass.

• At scale:
– Pegs a CPU
– Controller loop time exceeds 1 second, leading to lag in picking 

up new changes from Southbound Database

• Goal: only recalculate changes



But…

• Attempt didn’t quite work
– Persisting state is hard
– Too many “back doors” to full recalculation

• Result:
– Didn’t provide a gain during scale up/scale down 
– Quiesces OVN controller doing idle time (but there are simpler 

ways to get there)



Open Need

• NB and SB DBs
– Today, one ovsdb-server process for each

• Defeats increasing concurrency via horizontal scaling

– Clustering for both NB and SB
• Avoid SPOFs
• Horizontally scale NB
• “Shard” chassis among SB 



Questions?

• Thanks for listening!


