The Power of Compound Caches in the OVS Pipeline

How OVS achieves high performance for complex pipelines

Ben Pfaff blp@ovn.org

Nov. 7, 2016

Software Switch Performance

Keys to high performance in a software switch:

- 1. Fast packet I/O.
- 2. Low per-packet overhead.
- 3. Low per-packet processing cost.

Distraction: kernel vs. userspace vs. mix

Not key to performance. It is incidental. (DPDK in kernel?)

Key #1: Packet I/O Methods

Examples:

- AF_PACKET sockets
- Open vSwitch kernel module
- Netmap
- DPDK
- (e)BPF

Fast packet I/O is:

- Important
- Orthogonal to switch architecture
- Not comparable to complete software switches
- Not what I'm interested in today

Key #2: Low per-packet overhead

Common software switch organization:

Key #2: Low per-packet overhead

Open vSwitch adds a parser to the pipeline:

Key #3: Low Packet Processing Cost

A stage is often just a function:

- code
- Can do anything or nothing.
- No overhead.
- Commonly tested with "null pipeline".

Key #3: Low Packet Processing Cost

Open vSwitch stages are expensive classifier tables:

- Classifier lookups are expensive.
- One lookup for every stage.
- Limited choice of actions.

So... OVS is Slow?

Two strikes against OVS performance:

- High per-packet overhead.
- High per-packet processing cost.

Therefore, OVS must be slow.

So... OVS is Slow?

Two strikes against OVS performance:

- High per-packet overhead.
- High per-packet processing cost.

Therefore, OVS must be slow.

Except: Caching

Caches in Networking Software

Caches have a long history in networking, e.g.:

- MAC learning.
- ARP cache in IPv4 (and ND cache in IPv6).
- Route caches.

Caches also have a bad reputation in networking:

- Hit rate depends on traffic \rightarrow unpredictable performance.
- Invalidation can be tricky.
- Most famously, Linux removed its route cache.

Simple Caching

Helpful, but works for any kind of switch, not just OVS. So OVS still has extra overhead and will still be slower.

Compound Caching

OVS actually caches the entire pipeline:

A single cache hit bypasses the entire pipeline. Other software switches can't do this trick.

More About Compound Caching

Cross-product N stages into 1 stage (see NSDI 2015 paper):

- High base per-packet cost (parsing + 1 classifier lookup).
- N stages costs per-packet about the same as 1 stage.
- Therefore: null pipeline is slow, complex pipeline is fast.
- Hardware classification offload is possible.

OVS Performance Comparison

Typical switches:

- Fast with few stages
- Slow as stages increase

OVS:

• Slow with few stages

Per-Packet Forwarding Latency

- Not much slow as stages increase
- Cache hit rate is paramount so we've invested (see NSDI)

Forwarding Performance as Stages Increase

Final Thoughts

Could other switches adopt compound caches? Yes:

- Stages must record their read and write dependencies.
- Probably this requires stages to be rewritten.

Why are long, complex pipelines useful?

• Network virtualization: OVN, NSX, NVP

What's a good benchmark?

• Hard to say.

Questions?

Ben Pfaff blp@ovn.org

For more information about Open vSwitch, please visit openvswitch.org.