

The State of Stateful Services

Joe Stringer, Jarno Rajahalme {joe,jarno}@ovn.org

- Connection Tracking
- Firewalling
- NAT
- Other stateful services
- Summary

- OVN heating up
 - OpenStack
 - Kubernetes
- Expanding feature set
 - Firewalls
 - NAT
 - Load Balancing

- Track connections
 - Per-connection state stored in datapath
 - Expose concepts like "new connection"
- Microflow steering without matching every microflow
 - Avoid upcall when possible
- Leverage existing work
- Foundation for a variety of stateful services

Connection Tracking

Example firewall

Table	Match	Action
0	priority=100,in_port=1,ip	ct(commit),2
0	priority=100,in_port=2,ip,ct_state=-trk	ct(table=1)
0	priority=10,arp	normal
0	priority=1	drop
1	priority=100,in_port=2,ip,ct_state=+est	1
1	priority=1	drop

Packet & connection states

- Packets are untracked initially*, become tracked via ct()
- Tracked (<u>trk</u>) packets may be...
 - Part of a new or established connection
 - Reply (rpl): Connection must be established
 - **Rel**ated: Related to an established connection
 - o <u>Inv</u>alid

^{*} Exception: internal ports in current namespace may inherit state from local network stack

- ct_state
- ct_zone
 - Logically separate connection tracking table
 - Multi-tenancy
- ct_mark
 - Attach 32 bits of metadata to particular connections
- ct_label
 - Similar to mark, 128 bits

EVS Open vSwitch

Conntrack action

- Transparently reassemble IP fragments (re-fragment on output)
- No args: Let the connection tracker know, ignore its results.
- zone=N: Track in logical zone N
- alg=ftp: Apply protocol-specific tracking, eg FTP detect data connections
- exec(..): Additional actions in connection tracking context
 - o set_field(...->ct_mark); set_field(...->ct_label)
 - o Changes matchable only on recirculated packets.
- table=N: Clone packet to send to connection tracker. When the connection tracker is finished, resume processing in table N for that packet. The original packet continues right after the ct(...) action.
- commit: Persist state about this connection

NAT & Load Balancing

Network Address Translation Use Cases

- OpenStack allows a persistent Floating IP to be assigned for a VM in addition to dynamically allocated Fixed IP
 - Both Source NAT (SNAT) and Destination NAT (DNAT) needed to map between these
- Kubernetes Services hide servers behind a Virtual IP addresses
 - Load balancer chooses the server for each connection
 - DNAT to map the virtual IP to the chosen server's IP address
- The corresponding transport port can also be mapped
 - Without an explicit port (range) the port is mapped only in case of a collision

NAT Action Extends The CT Action

- Always executes in the context of the current connection
 - o CT(..., NAT(...)
 - Typically NAT can be added to CT actions already used for ACLs.
- New connections need a source or destination address (range) and optionally a port (range) + a CT commit and possibly the zone argument

```
ct(commit, nat(src=10.0.0.240), alg=ftp)
ct(commit, zone=1, nat(src=10.0.0.240:32768-65535, random))
ct(commit, nat(dst=10.0.0.128-10.0.0.254, hash))
ct(commit, nat(dst=10.0.0.240-10.0.0.254:32768-65535, persistent))
```

 NAT without arguments only NATs committed, established, or related uncommitted connections

NAT for OpenStack Floating IPs

DNAT Load Balancing

DNAT Load Balancing (cont.)

- Controller needs to balance traffic by (re-)specifying group weights
 - Based on server feedback or group stats
- Bucket selection currently happens on Ethernet + 5-tuple hash
 - o recirc_id(0),in_port(2),eth(src=80:88:88:88:88:11,dst=80:88:88:88:88),eth_type(0x0800), ipv4(src=10.1.1.1,dst=10.1.1.64,proto=6,frag=no),tcp(src=60754,dst=80), ..., actions:ct (commit,nat(dst=10.1.1.4)),recirc(0x1)
- Every connection goes to userspace as a miss upcall
- More work needed to avoid unnecessary upcalls

Open vSwitch

Connection Tracking Status

- Conntrack kernel patches merged and part of Linux-4.3
- Open vSwitch countrack patches:
 - Userspace (ofproto) support in master
 - System-traffic testsuite in master
 - Kernel datapath backport under review
 - DPDK/Userspace datapath series posted
- NAT: RFC series posted on net-next and ovs-dev
 - Non-RFC when net-next window opens
 - DPDK/Userspace datapath future work
- Load-balancing: Investigation phase
 - Plausible with NAT functionality
 - May need further extension for a full implementation

