
The State of
Stateful Services
Joe Stringer, Jarno Rajahalme

{joe,jarno}@ovn.org

Agenda
● Connection Tracking

● Firewalling

● NAT

● Other stateful services

● Summary

2

Motivation
● OVN heating up

○ OpenStack
○ Kubernetes

● Expanding feature set
○ Firewalls
○ NAT
○ Load Balancing

3

Connection Tracking
● Track connections

○ Per-connection state stored in datapath
○ Expose concepts like “new connection”

● Microflow steering without matching every microflow
○ Avoid upcall when possible

● Leverage existing work

● Foundation for a variety of stateful services

4

Connection Tracking

OVS Flow Table

Conntrack
Table

Populate ct_* fields,
continue processing

actions=ct(...),...

userspace

datapath

Create

1

2

3

table=N?

commit?

Lookup

Example firewall
Table Match Action

0 priority=100,in_port=1,ip ct(commit),2

0 priority=100,in_port=2,ip,ct_state=-trk ct(table=1)

0 priority=10,arp normal

0 priority=1 drop

1 priority=100,in_port=2,ip,ct_state=+est 1

1 priority=1 drop

6

Packet & connection states
● Packets are untracked initially*, become tracked via ct()
● Tracked (trk) packets may be..

○ Part of a new or established connection
○ Reply (rpl): Connection must be established
○ Related: Related to an established connection
○ Invalid

* Exception: internal ports in current namespace may inherit state from local network stack 7

Conntrack match fields
● ct_state
● ct_zone

○ Logically separate connection tracking table
○ Multi-tenancy

● ct_mark
○ Attach 32 bits of metadata to particular connections

● ct_label
○ Similar to mark, 128 bits

8

Conntrack action
● Transparently reassemble IP fragments (re-fragment on output)
● No args: Let the connection tracker know, ignore its results.
● zone=N: Track in logical zone N
● alg=ftp: Apply protocol-specific tracking, eg FTP detect data connections
● exec(..): Additional actions in connection tracking context

○ set_field(...->ct_mark); set_field(...->ct_label)
○ Changes matchable only on recirculated packets.

● table=N: Clone packet to send to connection tracker. When the connection
tracker is finished, resume processing in table N for that packet. The original
packet continues right after the ct(...) action.

● commit: Persist state about this connection

9

NAT & Load Balancing

10

Network Address Translation Use Cases
● OpenStack allows a persistent Floating IP to be assigned for a VM in addition

to dynamically allocated Fixed IP
○ Both Source NAT (SNAT) and Destination NAT (DNAT) needed to map between these

● Kubernetes Services hide servers behind a Virtual IP addresses
○ Load balancer chooses the server for each connection
○ DNAT to map the virtual IP to the chosen server’s IP address

● The corresponding transport port can also be mapped
○ Without an explicit port (range) the port is mapped only in case of a collision

11

NAT Action Extends The CT Action
● Always executes in the context of the current connection

○ CT(..., NAT(...), ...)
○ Typically NAT can be added to CT actions already used for ACLs.

● New connections need a source or destination address (range) and
optionally a port (range) + a CT commit and possibly the zone argument
○ ct(commit,nat(src=10.0.0.240),alg=ftp)
○ ct(commit,zone=1,nat(src=10.0.0.240:32768-65535,random))
○ ct(commit,nat(dst=10.0.0.128-10.0.0.254,hash))
○ ct(commit,nat(dst=10.0.0.240-10.0.0.254:32768-65535,persistent))

● NAT without arguments only NATs committed, established, or related
uncommitted connections

12

NAT for OpenStack Floating IPs

13

VM
Fixed IP:
10.0.0.1

Floating IP:
176.1.2.3

ct(nat(src=176.1.2.3),commit),
output

ct(nat,table=2)

ct(nat,table=1)

E.g.,
Public

Internet

new

outputest

output est

ct(nat(dst=10.0.0.1),commit),
output

new, nw_dst=176.1.2.3

DNAT Load Balancing

14

Select
Group

Virtual IP
ip_dst=

10.1.1.64 Server1

Client1

Client2

NAT(dst=10.1.1.2)

NAT(dst=10.1.1.3)

NAT(dst=10.1.1.4)

NAT

Server2

Server3

DNAT Load Balancing (cont.)
● Controller needs to balance traffic by (re-)specifying group weights

○ Based on server feedback or group stats

● Bucket selection currently happens on Ethernet + 5-tuple hash
○ recirc_id(0),in_port(2),eth(src=80:88:88:88:88:11,dst=80:88:88:88:88:88),eth_type(0x0800),

ipv4(src=10.1.1.1,dst=10.1.1.64,proto=6,frag=no),tcp(src=60754,dst=80), … , actions:ct
(commit,nat(dst=10.1.1.4)),recirc(0x1)

● Every connection goes to userspace as a miss upcall
● More work needed to avoid unnecessary upcalls

15

Connection Tracking Status
● Conntrack kernel patches merged and part of Linux-4.3
● Open vSwitch conntrack patches:

○ Userspace (ofproto) support in master
○ System-traffic testsuite in master
○ Kernel datapath backport under review
○ DPDK/Userspace datapath series posted

● NAT: RFC series posted on net-next and ovs-dev
○ Non-RFC when net-next window opens
○ DPDK/Userspace datapath future work

● Load-balancing: Investigation phase
○ Plausible with NAT functionality
○ May need further extension for a full implementation

16

Q&A

17

???

