
MidoNet
and the

Open vSwitch Datapath
Duarte Nunes

duarte@midokura.com
@duarte_nunes

Agenda
● MidoNet

○ Architecture
○ Agent

● Distributed state
○ Device state
○ Flow state

● Relationship with datapath
○ Netlink library
○ Performance
○ Flow bookkeeping

Bare Metal
Server

Bare Metal
Server

MidoNet transform this...

VM

VM

VM

VM VM

VM VM

VM

VM

VM

VM

VM VM

VM VM

VM

VM

VM

VM

VM VM

VM VM

VM

VM

VM

VM

VM VM

VM VM

VM

IP Fabric

Bare Metal
Server

Bare Metal
Server

...into this...

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM VM

VM

VM

VM
VM

VM

VMVM

VM

VM

VM

VM

VM

VM

VM

FW

LB

FW

LB

Internet/
WAN

FW

Bare Metal
Server

Bare Metal
Server

Packet processing

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM VM

VM

VM

VM
VM

VM

VMVM

VM

VM

VM

VM

VM

VM

VM

FW

LB

FW

LB

Internet/
WAN

FW

Bare Metal
Server

Bare Metal
Server

VM

VM

VM

VM VM

VM VM

VM

VM

VM

VM

VM VM

VM VM

VM

VM

VM

VM

VM VM

VM VM

VM

VM

VM

VM

VM VM

VM VM

VM

IP Fabric

midonet
nsdb 2

 midonet
nsdb 3

midonet
nsdb 1

midonet
gateway

2

 midonet
gateway

3

midonet
gateway

1

IP FabricIP Fabric
Internet/

WAN

Physical view

MidoNet
● Fully distributed architecture
● All traffic processed at the edges, i.e., where it ingresses the physical network

○ virtual devices become distributed
○ a packet can traverse a particular virtual device at any host in the cloud
○ distributed virtual bridges, routers, NATs, FWs, LBs, etc.

● No SPOF
● No middle boxes
● Horizontally scalable L2 and L3 Gateways

Gateway 1

MidoNet Hosts

Quagga,
bgpd

OVS kmod

IP3

eth0 eth1
VXLAN

Tunnel Port

Internet/WAN

port1 port2

port3, veth0

veth1

MidoNet Agent
(Java Daemon)Compute 1

VM

VM

VM

VM VM

VM VM

VM

IP Fabric

OVS kmod

IP1

VXLAN
Tunnel Port

eth0

port5,
tap12345

MidoNet Agent
(Java Daemon)

Flow computation and tunneling
● Flows are computed at the ingress host

○ by simulating a packet’s path through the virtual topology
○ without fetching any information off-box (~99% of the time)

● Just-in-time flow computation
● If the egress port is on a different host, then the packet is tunneled

○ the tunnel key encodes the egress port
○ no computation is needed at the egress

Inside the Agent Flow
table

Flow
state

ARP
broker

CPU

Flow
table

Flow
state

ARP
broker

CPU

Flow
table

Flow
state

ARP
broker

CPU

Flow
table

Flow
state

ARP
broker

CPU

Upcall Output

Simulation

Datapath

BackchannelBackchannelBackchannelBackchannel Virtual
Topology

User

Kernel

queue userspace packet packet execution, flow
create and delete

Device state
● ZooKeeper serves the virtual network topology

○ reliable subscription to topology changes

● Agents fetch, cache, and “watch” virtual devices on-demand to process
packets

● Packets naturally traverse the same virtual device at different hosts
● This affects device state:

○ a virtual bridge learns a MAC-port mapping a host and needs to read it in other hosts
○ a virtual router emits an ARP request out of one host and receives the reply on another host

● Store device state tables (ARP, MAC-learning, routes) in ZooKeeper
○ interested agents subscribe to tables to get updates

○ the owner of an entry manages its lifecycle

○ use ZK Ephemeral nodes so entries go away if a host fails

ARP Table

VM

VM

ARP
Table

IP
Fabric

VM

VM

ARP Table

VM

VM

ARP
Table

IP
Fabric

VM

VM

ARP Table

VM

VM VM

ARP
Table

IP
Fabric

Encapsulated
ARP request

VM

ARP Table

VM

VM

ARP
Table

IP
Fabric

ARP reply handled
locally and written
to ZK

ZK notification

VM

VM

Encapsulated
packet

ARP Table

VM

VM

ARP
Table

IP
Fabric

VM

VM

Flow state
● Per-flow L4 state, e.g. connection tracking or NAT
● Forward and return flows are typically handled by different hosts

○ thus, they need to share state

● Tricky to leverage megaflows
○ agent needs to generate this state, replicate it

Sharing state - Peer-to-peer handoff

Node 2Node 1
1. New flow arrives 4. Tunnel the packet 5. Deliver the packet

Node 4
(possible

asym.
fwd. path)

Node 3
(possible

asym.
ret. path)

2. Check or create
 local state

3. Replicate the flow
 state to interested set

1. Return flow arrives4. Deliver the packet

Sharing state - Peer-to-peer handoff

Node 2Node 1
3. Tunnel the packet

Node 4
(possible

asym.
fwd. path)

Node 3
(possible

asym.
ret. path)

2. Lookup local state

Sharing state - Peer-to-peer handoff

Node 2Node 1

3. Tunnel the packet

4. Deliver the packet

Node 3
(possible

asym.
ret. path)

2. Lookup local state

1. Exiting flow
 arrives at different
 node

Node 4
(possible

asym.
fwd. path)

Netlink requests
● JVM netlink library, implements rtnetlink and odp
● Replies and notifications are modeled as asynchronous, observable streams
● A simulation entails packet execution, and flow create and delete operations
● Flow create

○ optimistic, not ack’ed or echo’ed
○ errors are ignored
○ may result in duplicates

● Flow delete
○ echo’d to get stats

NetlinkRequestBroker

...

Array of Observers indexed by seq

NL Socket

Publisher

...

Pre-allocated buffer split into fixed size chunks

Writer

Reader

● Packet Execution
○ 2.747 ± 0.241 us/op

● Flow creation
○ 5.476 ± 0.356 us/op

● Concurrent flow creation (2 threads)
○ 24.960 ± 2.138 us/op
○ ouch

● Flow creation + deletion
○ 11.873 ± 1.321 us/op
○ 88k ops/s

● Flow creation + deletion through broker
○ 12.380 ± 1.449 us/op

Performance

CPU: Intel(R) Xeon(R) @ 2.40GHz
Number of CPUs: 16
Threads per core: 2
Cores per socket: 4
Sockets: 2
NUMA node(s): 2
L1 cache: 128K
L2 cache: 1MB
L3 cache: 12MB
System memory: 24GB

Flow bookkeeping
● All flows have a hard time expiration

○ also important for the distributed flow state mechanism

● No idle expiration
○ flow gets would be too costly

● Invalidations
○ all flows are indexed by the set of tags applied during their simulation
○ e.g., the ID of each traversed device is a tag
○ this allows flows to be removed upon virtual topology changes

Some tricks

OVS kmod

VXLAN
Tunnel Port

port2,
vethRecirc

IP fwd.VXLAN
Tunnel Port

● Megaflow bypass by setting a bit in the tunnel key
○ Force packet into userspace for flow tracing

● Double encapsulation for overlay tunnels

Conntrack?
● Synchronize conntrack state

○ How? How often?
○ Will the state be available to the egress host when simulating the return flow?

● Confine flow state to the compute host
○ Same host must process forward and return flows
○ This means doing a simulation in the gateway and re-doing it in the compute
○ More load on computes
○ SPoF

Questions?

Thank you!

