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MidoNet

e Fully distributed architecture

e All traffic processed at the edges, i.e., where it ingresses the physical network

o virtual devices become distributed
o a packet can traverse a particular virtual device at any host in the cloud
o distributed virtual bridges, routers, NATs, FWs, LBs, etc.

e No SPOF
e No middle boxes
e Horizontally scalable L2 and L3 Gateways
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MidoNet Hosts
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Flow computation and tunneling

e Flows are computed at the ingress host
o by simulating a packet’s path through the virtual topology
o  without fetching any information off-box (~99% of the time)

e Just-in-time flow computation

e |f the egress port is on a different host, then the packet is tunneled

o the tunnel key encodes the egress port
o no computation is needed at the egress
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Device state

e ZooKeeper serves the virtual network topology
o reliable subscription to topology changes

e Agents fetch, cache, and “watch” virtual devices on-demand to process
packets
e Packets naturally traverse the same virtual device at different hosts

e This affects device state:

o avirtual bridge learns a MAC-port mapping a host and needs to read it in other hosts
o avirtual router emits an ARP request out of one host and receives the reply on another host

e Store device state tables (ARP, MAC-learning, routes) in ZooKeeper
O interested agents subscribe to tables to get updates
O the owner of an entry manages its lifecycle

O use ZK Ephemeral nodes so entries go away if a host fails
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ARP Table
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ARP Table
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Flow state

e Per-flow L4 state, e.g. connection tracking or NAT

e Forward and return flows are typically handled by different hosts
o thus, they need to share state

e Tricky to leverage megaflows
o agent needs to generate this state, replicate it
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Sharing state - Peer-to-peer handoff

2. Lookup local state

—_—

1. Exiting flow

arrives at different

Node 4
(possible
asym.
fwd. path)

node

Node 1

3. Tunnel the packet

Node 3
(possible
asym.
ret. path)

Node 2

4. Deliver the packet



Netlink requests

JVM netlink library, implements rtnetlink and odp
Replies and naotifications are modeled as asynchronous, observable streams
A simulation entails packet execution, and flow create and delete operations

Flow create
o optimistic, not ack’ed or echo’ed
o errors are ignored
o may result in duplicates

e Flow delete

o echo’d to get stats
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NetlinkRequestBroker

Pre-allocated buffer split into fixed size chunks
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Performance

¢ PaCket EXGCUtIOﬂ CPU: Intel(R) Xeon(R) @ 2.40GHz
o 2.747 £ 0.241 us/op Number of CPUs: 16
. Threads per core: 2
e Flow creation Cores per socket: 4
o 5.476 +0.356 us/op Sockets: 2
) NUMA node(s): 2
e Concurrent flow creation (2 threads) L1 cache: 128K
o 24.960 + 2.138 us/op 2 cache: o
o ouch System memory:  24GB

e Flow creation + deletion
o 11.873 +1.321 us/op
o 88k ops/s

e Flow creation + deletion through broker
o 12.380 + 1.449 us/op
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Flow bookkeeping

e All flows have a hard time expiration
o also important for the distributed flow state mechanism
e No idle expiration
o flow gets would be too costly
e Invalidations
o all flows are indexed by the set of tags applied during their simulation

o e.g. the ID of each traversed device is a tag
o this allows flows to be removed upon virtual topology changes
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Some tricks

Megaflow bypass by setting a bit in the tunnel key

o Force packet into userspace for flow tracing

Double encapsulation for overlay tunnels
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Conntrack?

e Synchronize conntrack state

o How? How often?

o  Will the state be available to the egress host when simulating the return flow?
e Confine flow state to the compute host

o Same host must process forward and return flows

o This means doing a simulation in the gateway and re-doing it in the compute
o More load on computes

o SPoF
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Questions?



Thank you!



