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Agenda
● MidoNet

○ Architecture
○ Agent

● Distributed state
○ Device state
○ Flow state

● Relationship with datapath
○ Netlink library
○ Performance
○ Flow bookkeeping
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MidoNet
● Fully distributed architecture
● All traffic processed at the edges, i.e., where it ingresses the physical network

○ virtual devices become distributed
○ a packet can traverse a particular virtual device at any host in the cloud
○ distributed virtual bridges, routers, NATs, FWs, LBs, etc.

● No SPOF
● No middle boxes
● Horizontally scalable L2 and L3 Gateways
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Flow computation and tunneling
● Flows are computed at the ingress host

○ by simulating a packet’s path through the virtual topology
○ without fetching any information off-box (~99% of the time)

● Just-in-time flow computation
● If the egress port is on a different host, then the packet is tunneled

○ the tunnel key encodes the egress port
○ no computation is needed at the egress
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Device state
● ZooKeeper serves the virtual network topology

○ reliable subscription to topology changes

● Agents fetch, cache, and “watch” virtual devices on-demand to process 
packets

● Packets naturally traverse the same virtual device at different hosts
● This affects device state:

○ a virtual bridge learns a MAC-port mapping a host and needs to read it in other hosts
○ a virtual router emits an ARP request out of one host and receives the reply on another host

● Store device state tables (ARP, MAC-learning, routes) in ZooKeeper
○ interested agents subscribe to tables to get updates

○ the owner of an entry manages its lifecycle

○ use ZK Ephemeral nodes so entries go away if a host fails
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Flow state
● Per-flow L4 state, e.g. connection tracking or NAT
● Forward and return flows are typically handled by different hosts

○ thus, they need to share state

● Tricky to leverage megaflows
○ agent needs to generate this state, replicate it
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Netlink requests
● JVM netlink library, implements rtnetlink and odp
● Replies and notifications are modeled as asynchronous, observable streams
● A simulation entails packet execution, and flow create and delete operations
● Flow create

○ optimistic, not ack’ed or echo’ed
○ errors are ignored
○ may result in duplicates

● Flow delete
○ echo’d to get stats
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● Packet Execution
○ 2.747 ± 0.241 us/op

● Flow creation
○ 5.476 ± 0.356 us/op

● Concurrent flow creation (2 threads)
○ 24.960 ± 2.138 us/op
○ ouch

● Flow creation + deletion 
○ 11.873 ± 1.321 us/op
○ 88k ops/s

● Flow creation + deletion through broker
○ 12.380 ± 1.449 us/op

Performance

CPU:                         Intel(R) Xeon(R) @ 2.40GHz
Number of CPUs:     16
Threads per core:     2
Cores per socket:     4
Sockets:                   2
NUMA node(s):        2
L1 cache:                 128K
L2 cache:                 1MB
L3 cache:                 12MB
System memory:      24GB



Flow bookkeeping
● All flows have a hard time expiration

○ also important for the distributed flow state mechanism

● No idle expiration
○ flow gets would be too costly

● Invalidations
○ all flows are indexed by the set of tags applied during their simulation
○ e.g., the ID of each traversed device is a tag
○ this allows flows to be removed upon virtual topology changes



Some tricks

OVS kmod

VXLAN
Tunnel Port

port2, 
vethRecirc

IP fwd.VXLAN
Tunnel Port

● Megaflow bypass by setting a bit in the tunnel key
○ Force packet into userspace for flow tracing

● Double encapsulation for overlay tunnels



Conntrack?
● Synchronize conntrack state

○ How? How often? 
○ Will the state be available to the egress host when simulating the return flow?

● Confine flow state to the compute host
○ Same host must process forward and return flows
○ This means doing a simulation in the gateway and re-doing it in the compute
○ More load on computes
○ SPoF



Questions?



Thank you!


