MidoNet

and the

Open vSwitch Datapath

Duarte Nunes
duarte@midokura.com
@duarte_nunes

Agenda

e MidoNet
o Architecture
o Agent
e Distributed state
o Device state
o Flow state
e Relationship with datapath

o Netlink library
o Performance
o Flow bookkeeping

net

MidoNet transform this...

IP Fabric R

VM VM

Bare Metal
Server

Bare Metal
Server

‘. net

_...into.this...

|
VM VM VM |1

Bare Metal
Server

1 1 1
1 I 1
JI : — e o e o e e e e e e e e e . - 1 Pt

Bare Metal
Server

|
_________________ |
| : 1
: , I VM || WM
1
I ! A
1 Q) 1
" |
I |
I |
|

D@x """"""""""" R e

|

|

|

|

|

|

|

|

VM VM VM VM ||

|

|

|

|

|

|

|

|

Bare Metal Bare Metal |

Server Server I

VM VM VM VM

________________________________ N

Physical view

Internet/
WAN

— e —

— IP Fabric -

\‘H

it | || T || @)| e
g 1Wy nsdb 1 w || wm - VM a1 -

lceiet midonet (A () (R [Bare Metal

gate2way nsdb 2 wi | [Fvm | [Fvm -_ Server B
rzlti(\?\?aet midonet w | ([l (] (e Bare Metal
9 2 y nsdb 3 w | (] (50 B Server

G net

MidoNet

e Fully distributed architecture

e All traffic processed at the edges, i.e., where it ingresses the physical network

o virtual devices become distributed
o a packet can traverse a particular virtual device at any host in the cloud
o distributed virtual bridges, routers, NATs, FWs, LBs, etc.

e No SPOF
e No middle boxes
e Horizontally scalable L2 and L3 Gateways

0¥ net

MidoNet Hosts

IP Fabric
_/

} Internet/WAN

IP1i
ethO

VM

)

Compute 1

VXLAN
Tunnel Port g
OVS kmod —
port5,
tap12345

IPBl
ethO eth1 i
VXLAN

Tunnel Port .port1 port2 n

OVS kmod —
port3, vethO

Gateway 1

net

Flow computation and tunneling

e Flows are computed at the ingress host
o by simulating a packet’s path through the virtual topology
o without fetching any information off-box (~99% of the time)

e Just-in-time flow computation

e |f the egress port is on a different host, then the packet is tunneled

o the tunnel key encodes the egress port
o no computation is needed at the egress

7’ net

Inside the Agent

Sim

Datapath

4—[[[[Backchannel]4—

Virtual
Topology

ulation

User

Kernel

queue userspace packet

A

packet execution, flow

create and delete

net

Device state

e ZooKeeper serves the virtual network topology
o reliable subscription to topology changes

e Agents fetch, cache, and “watch” virtual devices on-demand to process
packets
e Packets naturally traverse the same virtual device at different hosts

e This affects device state:

o avirtual bridge learns a MAC-port mapping a host and needs to read it in other hosts
o avirtual router emits an ARP request out of one host and receives the reply on another host

e Store device state tables (ARP, MAC-learning, routes) in ZooKeeper
O interested agents subscribe to tables to get updates
O the owner of an entry manages its lifecycle

O use ZK Ephemeral nodes so entries go away if a host fails

0¥ net

ARP Table

‘: net

ARP Table

‘: net

ARP Table

‘: net

ARP Table

X

VM

ARP reply handled
locally and written
to ZK

ZK notification

net

ARP Table

‘: net

Flow state

e Per-flow L4 state, e.g. connection tracking or NAT

e Forward and return flows are typically handled by different hosts
o thus, they need to share state

e Tricky to leverage megaflows
o agent needs to generate this state, replicate it

‘: net

Sharing state - Peer-to-peer handoff

Node 4
(possible
asym.
fwd. path)

— > Node 1

1. New flow arrives

2. Check or create

3. Replicate the flow
state to interested set

Node 3
(possible
asym.
ret. path)

local state

4. Tunnel the packet

Node 2

5. Deliver the packet

Sharing state - Peer-to-peer handoff

Node 4
(possible
asym.
fwd. path)

-

4. Deliver the packet

Node 1

Node 3
(possible
asym.
ret. path)

3. Tunnel the packet

Node 2

1. Return flow arrives

2. Lookup local state

Sharing state - Peer-to-peer handoff

2. Lookup local state

—_—

1. Exiting flow

arrives at different

Node 4
(possible
asym.
fwd. path)

node

Node 1

3. Tunnel the packet

Node 3
(possible
asym.
ret. path)

Node 2

4. Deliver the packet

Netlink requests

JVM netlink library, implements rtnetlink and odp
Replies and naotifications are modeled as asynchronous, observable streams
A simulation entails packet execution, and flow create and delete operations

Flow create
o optimistic, not ack’ed or echo’ed
o errors are ignored
o may result in duplicates

e Flow delete

o echo’d to get stats

£ net

NetlinkRequestBroker

Pre-allocated buffer split into fixed size chunks

Publisher
-~ Writer

NL Socket

. Reader

Array of Observers indexed by seq
i net

Performance

¢ PaCket EXGCUtIOﬂ CPU: Intel(R) Xeon(R) @ 2.40GHz
o 2.747 £ 0.241 us/op Number of CPUs: 16
. Threads per core: 2
e Flow creation Cores per socket: 4
o 5.476 +0.356 us/op Sockets: 2
) NUMA node(s): 2
e Concurrent flow creation (2 threads) L1 cache: 128K
o 24.960 + 2.138 us/op 2 cache: o
o ouch System memory: 24GB

e Flow creation + deletion
o 11.873 +1.321 us/op
o 88k ops/s

e Flow creation + deletion through broker
o 12.380 + 1.449 us/op

_‘ net

Flow bookkeeping

e All flows have a hard time expiration
o also important for the distributed flow state mechanism
e No idle expiration
o flow gets would be too costly
e Invalidations
o all flows are indexed by the set of tags applied during their simulation

o e.g. the ID of each traversed device is a tag
o this allows flows to be removed upon virtual topology changes

net

Some tricks

Megaflow bypass by setting a bit in the tunnel key

o Force packet into userspace for flow tracing

Double encapsulation for overlay tunnels

VXLAN VXLAN IP fwd. |
Tunnel Port __Tunnel Port _
= m
OVS kmod
portZ,T
vethRecirc

net

Conntrack?

e Synchronize conntrack state

o How? How often?

o Will the state be available to the egress host when simulating the return flow?
e Confine flow state to the compute host

o Same host must process forward and return flows

o This means doing a simulation in the gateway and re-doing it in the compute
o More load on computes

o SPoF

£ net

Questions?

Thank you!

