
Revaliwhat?
Keeping kernel flows fresh
Joe Stringer, NSBU



Overview
● This is a dev talk
● OVS Threading
● Lifecycle of a datapath flow

○ “OpenFlow rule” -> “rule”
○ “Datapath flow” -> “flow”
○ Userspace vs. Datapath (kernel/DPDK)

● Optimizations



Recap: OVS architecture

ovs-vswitchd

ofproto

netdev ofproto-dpif

dpifnetdev provider

dpif provider

datapath

Userspace

Kernel

NIC

OVSDB

OpenFlow



Threading

RevalidatorHandler / PMD

Main thread

OpenFlow
OVSDB

First packet Packet +
Flow_add

Flow_dump Flow_del 

Translation

ofproto-dpif

Controller, OVSDB

ovs-vswitchd
ofproto

ofproto-dpif

ofproto-dpif-xlate

ofproto-dpif-upcall

dpif



Miss Handling - “handler” threads

http://networkheresy.com/2014/11/13/accelerating-open-vswitch-to-ludicrous-speed/

● Birth of a kernel flow
● Install and forget



Cache validation (re-validation..)

● Flow was installed by handler.
● How do we delete the flow?

○ When do we delete it?
● Is it still valid? What about now?

○ OpenFlow/OVSDB changes
○ Rules that cause learning

● How do we keep statistics up to date?



Revalidator thread

● Fetch flows from datapath
● Translate from datapath format to userspace
● Run flow through ofproto-dpif classifier

○ Attribute statistics (rules, ifaces, netflow, etc)
○ Execute side-effects (L2 learning, rule learning)

● Check that the flow is correct
○ Delete idle/incorrect flow
○ Only needs to be done if something changed



Revalidator phases

● Dump flows - mark
○ Create lightweight "udpif_key" (ukey) cache.

■ One per flow; stores latest seen statistics,used

● Garbage collect - sweep
○ Iterate through ukey cache
○ Delete old ukey cache entries
○ If flow hasn’t been seen in a while, fetch/revalidate

● Synchronize all revalidator threads



Still with me?

● Fast enough with megaflows
○ Great! Can we get more performance?

● Insights and improvements
○ Testing
○ Flow limits
○ Flow deletion
○ Translation cache
○ Shorter identifiers



● This is not a sane way to run OVS
○ But useful to determine “worst case” revalidation

● ovs-appctl upcall/disable-megaflows
● ovs-appctl upcall/show
● netperf TCP_CRR
● nmap
● Change rule table several times a second

○ Raises “need_revalidate” flag

Testing revalidator performance



Flow limit

● How many flows can we support? 
○ Keep revalidator cycle around 1 second

● Limit on # datapath flows
○ Handlers stop installing flows, only execute

● How do we determine the limit?
○ Revalidation cycle takes <1000ms? increase
○ >1200ms? decrease… >2000? decrease more
○ Linked to max idle time for flow



Mark and Sweep

● Flow limit for installation affects deletion

n_flows
(datapath)

Revalidator phase
Dump flows (mark) Sweep

flow_limit
Handlers don’t
install

n_flows over time

● Delete flows throughout dump phase



● Flow dumps not 100% accurate
○ Multiple threads inserting, deleting flows
○ Flow dump is just a pair of [bucket,index]
○ Dumping batches
○ Can cause duplicates or missed flows

● Keep ukey cache around until GC phase
○ Track whether the flow was previously deleted
○ Don’t handle duplicate flows

Flow Dump Accuracy



Datapath flow max_idle

● No use caching idle flows
○ If n_flows > flow_limit, we really need the space

● OVS 2.1-2.3: 1500ms idle
○ When n_flows > flow_limit, 100ms
○ When > 2*flow_limit, delete all

● Master: 10s
○ Remain cached if used less consistently
○ Small improvement in max flow_limit



Translation cache (“xlate_cache”)

● Translation/Classification is expensive
● Cache the results of translation/classification

○ Which statistics do we need to update
○ What side-effects do we need to execute

● Gets invalidated when ofproto changes
○ Simple case fast, “full revalidation” still slow
○ Delete low-throughput flows.
○ If full revalidation is too expensive, flows are deleted 

anyway.



Revalidator logic
Fetch flow.
First dump for flow?

Is flow being 
used?

Done

Clear xlate_cache
Perform full 
revalidation.
Is flow correct?

Delete flow
(gets final stats)

No

No

Yes

Yes

Is ofproto-dpif the 
same as when 
‘ukey’ was 
created?

Create ukey.

Yes

No

No

Yes

Attribute statistics
Execute side-effects
Build/Use xlate_cache

50-80% revalidator performance improvement: 
https://github.com/openvswitch/ovs/commit/b256dc525c8ef663daf2330463e67a26207cc5f1

Is this flow
seeing a lot
of traffic?

No

Yes



Unique Flow Identifiers (“UFID”)

● Every flow operation requires full flow key
○ “in_port(2),eth(src=50:54:00:00:00:01,dst=50:54:00:00:00:03),eth_type(0x0800),ipv4(src=192.168.0.1,...)” 
○ Flow dump = fetch 10^5 flows/sec
○ nla_format (flow serialization->netlink) is #1 in perf

● Replace with identifier (128-bit)
○ Handler creates “ukey” with with id,key,mask,acts
○ Revalidator only fetches id + stats
○ Up to 50% performance increase for revalidator



Questions?
Thanks for listening!



Potential future topics

● Improve flow dump correctness in datapath
○ Keep track of flow add/deletions

● Combine flow dump + flow delete
● Link rule changes to flows

○ Better xlate_cache invalidation
● DPDK revalidation

○ PMD threads could be more accurate


