
Traffic visibility and control with sFlow
Open vSwitch 2014 Fall Conference

Peter Phaal
InMon Corp.
November 2014

Why monitor performance?

“If you can’t measure it, you can’t improve it”
Lord Kelvin

Time

Capacity

Demand

Static provisioning

$ Unused capacity

$$$ Service failure

$$ Unused capacity

$$ Savings

Time

Capacity

Demand

Dynamic provisioning

Feedback control

Measure

Control

System

desired
output

measured
output

Controllability and Observability

Basic concept is simple, a stable feedback control system requires:
1. ability to influence all important system states (controllable)
2. ability to monitor all important system states (observable)

It’s hard to stay on the road if you can’t see the
road, or keep to the speed limit without a
speedometer

It’s hard to stay on the road or maintain
speed if your brakes, engine or steering fail

Controllability and Observability driving example

Observability

Controllability

States location, speed, direction, ...

Effect of delay on stability

Measurement delay Planning delay

Time

Configuration delayDisturbance Response delay

EffectLoop delay

DDoS launched Identify target, attacker Black hole, mark, re-route? Switch CLI commands Route propagation Traffic dropped

Components of loop delay

e.g. Slow reaction time causes
tired / drunk / distracted

driver to weave, very slow
reaction time and they leave

the road

What is sFlow?

“In God we trust. All others bring data.”
Dr. Edwards Deming

Industry standard measurement technology integrated in switches
http://www.sflow.org/

http://www.sflow.org

Open source agents for hosts, hypervisors and applications

Host sFlow project (http://host-sflow.sourceforge.net) is center
of an ecosystem of related open source projects embedding

sFlow in popular operating systems and applications

http://host-sflow.sourceforge.net

Network (maintained by hardware in network devices)

- MIB-2 ifTable: ifInOctets, ifInUcastPkts, ifInMulticastPkts, ifInBroadcastPkts, ifInDiscards, ifInErrors, ifUnkownProtos,
ifOutOctets, ifOutUcastPkts, ifOutMulticastPkts, ifOutBroadcastPkts, ifOutDiscards, ifOutErrors

Host (maintained by operating system kernel)

- CPU: load_one, load_five, load_fifteen, proc_run, proc_total, cpu_num, cpu_speed, uptime, cpu_user, cpu_nice,
cpu_system, cpu_idle, cpu_wio, cpu_intr, cpu_sintr, interupts, contexts

- Memory: mem_total, mem_free, mem_shared, mem_buffers, mem_cached, swap_total, swap_free, page_in, page_out,
swap_in, swap_out

- Disk IO: disk_total, disk_free, part_max_used, reads, bytes_read, read_time, writes, bytes_written, write_time

- Network IO: bytes_in, packets_in, errs_in, drops_in, bytes_out, packet_out, errs_out, drops_out

Application (maintained by application)

- HTTP: method_option_count, method_get_count, method_head_count, method_post_count, method_put_count,
method_delete_count, method_trace_count, method_connect_count, method_other_count, status_1xx_count,
status_2xx_count, status_3xx_count, status_4xx_count, status_5xx_count, status_other_count

- Memcache: cmd_set, cmd_touch, cmd_flush, get_hits, get_misses, delete_hits, delete_misses, incr_hits, incr_misses,
decr_hists, decr_misses, cas_hits, cas_misses, cas_badval, auth_cmds, auth_errors, threads, con_yields,
listen_disabled_num, curr_connections, rejected_connections, total_connections, connection_structures, evictions,
reclaimed, curr_items, total_items, bytes_read, bytes_written, bytes, limit_maxbytes

Standard counters

Simple

- standard structures - densely packed blocks of counters

- extensible (tag, length, value)

- RFC 1832: XDR encoded (big endian, quad-aligned, binary) - simple to encode/
decode

- unicast UDP transport

Minimal configuration

- collector address

- polling interval

Cloud friendly

- flat, two tier architecture: many embedded agents → central “smart” collector

- sFlow agents automatically start sending metrics on startup, automatically discovered

- eliminates complexity of maintaining polling daemons (and associated configurations)

Scaleable push protocol

• Counters tell you there is a
problem, but not why.

• Counters summarize
performance by dropping high
cardinality attributes:

- IP addresses

- URLs

- Memcache keys

• Need to be able to efficiently
disaggregate counter by
attributes in order to
understand root cause of
performance problems.

• How do you get this data when
there are millions of
transactions per second?

Counters aren’t enough

Why the spike in traffic?
(100Gbit link carrying 14,000,000 packets/second)

• Random sampling is lightweight

• Critical path roughly cost of
maintaining one counter:  
if(--skip == 0) sample();

• Sampling is easy to distribute
among modules, threads,
processes without any
synchronization

• Minimal resources required to
capture attributes of sampled
transactions

• Easily identify top keys,
connections, clients, servers, URLs
etc.

• Unbiased results with known
accuracy

Break out traffic by client, server and port
(graph based on samples from100Gbit link carrying 14,000,000 packets/second)

sFlow also exports random samples

Integrated data model

Packet Header

Source Destination

TCP/UDP Socket TCP/UDP Socket

MAC Address MAC Address

Sampled Packet Headers

I/F Counters

Power, Temp.
NETWORK

HOST

CPU

Memory

I/O

Power, Temp.

Adapter MACs

APPLICATION

Sampled Transactions

Transaction Counters

TCP/UDP Socket

Independent agents sFlow analyzer joins data for integrated view

Embedded monitoring of all switches, all

Virtual Servers

Applications
Apache/PHP

Tomcat/Java

Memcached

Virtual Network

Servers

Network

Embedded monitoring of all
switches, all servers, all
applications, all the time

Consistent measurements
shared between multiple

management tools

Comprehensive data center wide visibility

Date sFlow spec. OVS Host sFlow

Jan 2010 sFlow Version 5 
(published July 2004)

sampled_header,
extended_switch,

if_counters

May 2010 project started

July 2010 sFlow Host Structures
(published July 2010)

host_descr, host_adapters,
host_cpu, host_memory,
host_disk_io, host_net_io

Sept 2010 OVS integration

Oct 2010 sFlow Host Structures
(published July 2010)

XenServer, KVM integration  
 host_parent, virt_node, virt_cpu,

virt_memory, virt_disk_io, virt_net_io
Jan 2012 Hyper-V integration

June 2014 sFlow OpenFlow Structures 
(published Nov 2014)

Docker integration,
Cumulus Linux integration

port_name

Nov 2014

sFlow LAG Counter structures
(published Sept 2012)

sFlow OpenFlow Structures
(published Nov 2014)

lag_port_stats, of_port,
port_name

Likely future OVS sFlow additions: sFlow Tunnel Structures (published November 2012),
extended_mpls from sFlow Version 5 (published July 2004)

sFlow, OVS and Host sFlow timeline

Software Defined Networking

“You can’t control what you can’t measure”
Tom DeMarco

Measurement standard supported by merchant silicon

20132011

P
or

ts

Commodity, bare metal, white box, merchant silicon based hardware
delivers standard platform (instrumentation / forwarding pipeline)  

→ simplifies creation of SDN solutions

• Simple, no change to normal forwarding behavior - BGP, OSPF, SPB, TRILL, LAG/MLAG
etc. used to control L2 / L3 forwarding tables

• Efficient, hardware multipath forwarding efficiently handles most flows. SDN used to control
ACL table and selectively override forwarding of specific flows (block, mark, steer, rate-limit),
maximizing effectiveness of limited general match capacity. 
Note: very few ACLs needed in fabric since policy has shifted to edge - mainly required to
protect control plane

• Scaleable, flows handled by existing control plane, SDN only used when controller wants to
make an exception.

• Robust, if controller fails, network keeps forwarding

Traffic control with hybrid SDN

WHITE PAPER: Engineered Elephant Flows in Large Scale CLOS Networks

OF-DPA-WP102-R 6

Using OpenFlow 1.3.1 to Build ECMP Networks
OpenFlow v1.0 uses only a single flow table with packet editing and forwarding actions in an action list. With OpenFlow v1.0
wildcard, flow entries can be used to forward packets as macro flows, with little or no controller intervention. But for
OpenFlow v1.0 to support multipath load balancing, the controller needs to reactively place each flow independently as a
separate micro flow. As a result, large numbers of flow entries are required, as well as significantly more transactions with
the controller. Since OpenFlow v1.0 implementations on commodity switches can only utilize a TCAM for load balancing, the
total number of flows required can easily exceed what the relatively low cost switches provide.

OpenFlow v1.3.1 by contrast uses multiple flow tables, but more significantly, provides the group table that can be used to
leverage the multipath hashing capabilities in switch hardware. The OpenFlow v1.3.1 “select” group type is designed to map
directly to hardware ECMP group tables. As a result, most forwarding can be handled using macro flows with significantly
fewer entries in the flow table. In addition, multiple tables can be used to minimize the “cross-product explosion” effect of
using a single table. With OpenFlow Data Plane Abstraction (OF-DPA), an OpenFlow v1.3.1 Controller could set up the
routes and ECMP group forwarding for all of the infrastructure switches. In particular, it can be used to populate the routing
tables and select groups for multipath. In this scenario, the controller uses LLDP to map the topology and detect link failures.
The controller also polls switches for port statistics and keeps track of the overall health of the network.

The OF-DPA flow tables and group tables that would be used for this application are shown in Figure 3. These are
programmed from an OpenFlow Controller using standard OpenFlow 1.3.1 protocol messages. The VLAN Flow table is used
to allow particular VLANs on a port or to assign a VLAN to untagged packets. The Termination MAC Flow table is used to
recognize the router MAC. Forwarding rules are installed in the Routing Flow table after the output groups are defined. The
L2 Interface group entries define the tagging policy for egress member ports, the L3 Unicast group entries provide the packet
editing actions for the next hop header, and the L3 ECMP group entry selects an output member based on hardware hashing.

FIGURE 3: OF-DPA Programming Pipeline for ECMP

One of the advantages of using OF-DPA is that it can install customized ECMP select groups. For example, rather than being
limited to the fixed N-way ECMP groupings that would be installed by a distributed routing protocol, the OpenFlow Controller
can use OF-DPA to install finer grained groups with buckets for different sets of ECMP members, e.g., it can assign groups
to flows. It can also customize the select groups to realized different weights for different members.

VLAN
Flow
Table

Termination
MAC Flow

Table

ACL
Policy
Flow
Table

Routing
Flow
Table

Ingress
Port
Flow
Table

L3 ECMP
Select
Group

Bucket 1

Bucket 2

Bucket 3

Bucket 4

L3 Unicast
Indirect Group

L3 Unicast
Indirect Group

L3 Unicast
Indirect Group

L3 Unicast
Indirect Group

L2 Interface
Indirect Gorup

Physical
Port

L2 Interface
Indirect Gorup

Physical
Port

L2 Interface
Indirect Gorup

Physical
Port

L2 Interface
Indirect Gorup

Physical
Port

Physical
Port

SDN control of ACL table  
(eAPI, REST, iptables, Hybrid OpenFlow…)

https://www.broadcom.com/collateral/wp/OF-DPA-WP102-R.pdf

https://www.broadcom.com/collateral/wp/OF-DPA-WP102-R.pdf

Cumulus Linux

Cumulus LinuxCumulus Linux

Cumulus Linux

ECMP Fabric

Hypervisor

Converging switch / server platforms

sFlow unifies monitoring of host OS, virtual machines / containers, on switches and servers,
physical and virtual switches to provide end-to-end visibility through a common set of tools

Cumulus Linux

Cumulus LinuxCumulus Linux

Cumulus Linux

ECMP Fabric

Hypervisor

Network virtualization

Real-time visibility into physical and virtual network edge and path across fabric 
(overlay / underlay addresses, protocols etc. visible in sampled packet headers)

Physical Server
Gateway service (VxLAN encap / dcap)

Encapsulated packets

VM

Large “Elephant” flows

http://research.microsoft.com/en-us/UM/people/srikanth/data/imc09_dcTraffic.pdf

Elephant flows are the small number
of long lived large flows responsible

for majority of bytes on network

http://research.microsoft.com/en-us/UM/people/srikanth/data/imc09_dcTraffic.pdf

packets

decode hash sendflow cache flushsample

Flow
Records

flow cache embedded on switchswitch

NetFlow
IPFIX
…

decode hash sendflow cache flush

Flow
Records

packets

send

polli/f counters

sample

multiple switches export sFlow
packets

send

polli/f counters

sample

...

centralized software flow cache

switch

switch
JSON/REST 
NetFlow
IPFIX
…

• Reduce ASIC cost / complexity
• Fast response (data not sitting on switch)
• Centralized, network-wide visibility
• Increase flexibility → software defined analytics

Move flow cache from ASIC to external software

Scale-out alternative to SNMP polling

Traffic analytics with sFlow

InMon sFlow-RT

active timeout active timeout

NetFlow

Open
vSwitch

SolarWinds Real-Time NetFlow Analyzer

• sFlow does not use flow cache, so realtime charts more accurately reflect traffic trend
• NetFlow spikes caused by flow cache active-timeout for long running connections

Rapid detection of large flows

Flow cache active timeout delays large flow detection,
limits value of signal for real-time control applications

Monitor

Feedback control loop with sFlow and OpenFlow

low configuration delay

low measurement delay

Together, sFlow and OpenFlow provide the observability and
controllability to enable SDN applications targeting low latency

control problems like Elephant flow traffic engineering

low planning delay

SDN application

ovs-vsctl set-controller br0 tcp:10.0.0.1:6633

ovs-vsctl — –id=@sflow create sflow agent=eth0 \
target=\”10.0.0.1:6343\” sampling=1000 polling=20 \
— set bridge br0 sflow=@sflow

Connect switches to central control plane

e.g. connect Open vSwitch to OpenFlow controller

e.g. connect Open vSwitch to sFlow analyzer

Minimal configuration to connect switches to
controllers, intelligence resides in external software

hsflowd

/etc/hsflowd.conf

/etc/hsflowd.auto sflowovsd Open vSwitch
ovs-vsctl

java

httpd

memcached

DNS-SD DNS
server

sFlow
collector

Host sFlow and configuration

http://blog.sflow.com/2012/01/host-sflow-distributed-agent.html

http://blog.sflow.com/2012/01/host-sflow-distributed-agent.html

Benefits of marking

Without marking, large
flows “Elephants” impact
latency of small flows
“Mice”

Marking and priority
queuing, minimal impact
on large flow throughput
and greatly improved
latency for small flows

http://www.slideshare.net/martin_casado/elephants-and-mice-elephant-detection-in-the-vswitch-with-hardware-handling
VMware / Cumulus demonstration

http://www.slideshare.net/martin_casado/elephants-and-mice-elephant-detection-in-the-vswitch-with-hardware-handling

Link Speed Large Flow Sampling Rate Polling Interval

10 Mbit/s  
(Mininet) >= 1Mbit/s 1-in-10 20 seconds

1 Gbit/s >= 100 Mbit/s 1-in-1,000 20 seconds

10 Gbit/s >= 1 Gbit/s 1-in-10,000 20 seconds

25 Gbit/s >= 2.5 Gbit/s 1-in-25,000 20 seconds

40 Gbit/s >= 4 Gbit/s 1-in-40,000 20 seconds

50 Gbit/s >= 5 Gbit/s 1-in-50,000 20 seconds

100 Gbit/s >= 10 Gbit/s 1-in-100,000 20 seconds

sFlow settings for large flow detection
Define large flow as flow consuming 10% of link bandwidth for 1 second

Marking demo with physical switch

http://blog.sflow.com/2014/03/performance-optimizing-hybrid-openflow.html

10.0.0.1 10.0.0.2 10.0.0.3

Mininet demonstration

s1

h1 h2 h3

Mininet VM

sFlow-RT controller

mark.js

Real-time analytics Hybrid OpenFlow

Open “Southbound” APIs

Real-time analytics and control

Open JavaScript/ECMAScript API
optimized for SDN traffic
engineering applications

sudo ./leafandspine.py \
-—leaf 1 \
-—spine 0 \
—-fanout 3 \
-—collector 192.168.56.1 \
—-controller 192.168.56.1 \
-—topofile /var/www/html/topology.json

leafandspine.py ships with sFlow-RT and configures Mininet
/ OVS / tc to simulate ECMP fabrics with priority queueing
and hybrid OpenFlow

192.168.56.1

// Define large flow as greater than 1Mbits/sec for 1 second or longer
var bytes_per_second = 1000000/8, duration_seconds = 1;

// get topology from Mininet
setTopology(JSON.parse(http("http://192.168.56.101/topology.json")));

// define TCP flow cache
setFlow('tcp',
 {keys:'ipsource,ipdestination,tcpsourceport,tcpdestinationport', filter:'direction=ingress',
 value:'bytes', t:duration_seconds}
);

// set threshold identifying Elephant flows
setThreshold('elephant', {metric:'tcp', value:bytes_per_second, byFlow:true, timeout:4});

// set OpenFlow marking rule when Elephant is detected
var idx = 0;
setEventHandler(function(evt) {
 if(topologyInterfaceToLink(evt.agent,evt.dataSource)) return;
 var port = ofInterfaceToPort(evt.agent,evt.dataSource);
 if(port) {
 var dpid = port.dpid;
 var id = "mark" + idx++;
 var k = evt.flowKey.split(',');
 var rule= {
 match:{in_port: port.port, dl_type:2048, ip_proto:6, nw_src:k[0], nw_dst:k[1], tcp_src:k[2], tcp_dst:k[3]},
 actions:["set_ip_dscp=8","output=normal"], priority:1000, idleTimeout:2
 };
 logInfo(JSON.stringify(rule,null,1));
 setOfRule(dpid,id,rule);
 }
},['elephant']);

mark.js

Run iperf between h2 and h3

Ping between h1 and h3 shows increased response time
(consistent with 3ms result from physical switch)

Start sFlow-RT controller running mark.js application

Repeat iperf between h2 and h3
(no significant change in throughput)

Controller detects large flow and applies OpenFlow rule
(flow marked DSCP 8, placing flow in low priority queue)

Ping between h1 and h3 shows steady response time
(consistent with 0.2ms result from physical switch)

Live Dashboard at SC14 in New Orleans this week

http://inmon.sc14.org/rt/sflow-rt/scinet/

http://inmon.sc14.org/rt/sflow-rt/scinet/

Questions?

