
OVSDB(7) Open vSwitch OVSDB(7)

NAME
ovsdb − Open vSwitch Database (Overview)

DESCRIPTION
OVSDB, the Open vSwitch Database, is a network−accessible database system. Schemas in OVSDB spec-

ify the tables in a database and their columns’ types and can include data, uniqueness, and referential in-

tegrity constraints. OVSDB offers atomic, consistent, isolated, durable transactions. RFC 7047 specifies

the JSON−RPC based protocol that OVSDB clients and servers use to communicate.

The OVSDB protocol is well suited for state synchronization because it allows each client to monitor the

contents of a whole database or a subset of it. Whenever a monitored portion of the database changes, the

server tells the client what rows were added or modified (including the new contents) or deleted. Thus,

OVSDB clients can easily keep track of the newest contents of any part of the database.

While OVSDB is general−purpose and not particularly specialized for use with Open vSwitch, Open

vSwitch does use it for multiple purposes. The leading use of OVSDB is for configuring and monitoring

ovs−vswitchd(8), the Open vSwitch switch daemon, using the schema documented in

ovs−vswitchd.conf.db(5). The Open Virtual Network (OVN) project uses two OVSDB schemas, docu-

mented as part of that project. Finally, Open vSwitch includes the “VTEP” schema, documented in vtep(5)

that many third−party hardware switches support for configuring VXLAN, although OVS itself does not di-

rectly use this schema.

The OVSDB protocol specification allows independent, interoperable implementations of OVSDB to be de-

veloped. Open vSwitch includes an OVSDB server implementation named ovsdb−server(1), which sup-

ports several protocol extensions documented in its manpage, and a basic command−line OVSDB client

named ovsdb−client(1), as well as OVSDB client libraries for C and for Python. Open vSwitch documen-

tation often speaks of these OVSDB implementations in Open vSwitch as simply “OVSDB,” even though

that is distinct from the OVSDB protocol; we make the distinction explicit only when it might otherwise be

unclear from the context.

In addition to these generic OVSDB server and client tools, Open vSwitch includes tools for working with

databases that have specific schemas: ovs−vsctl works with the ovs−vswitchd configuration database and

vtep−ctl works with the VTEP database.

RFC 7047 specifies the OVSDB protocol but it does not specify an on−disk storage format. Open vSwitch

includes ovsdb−tool(1) for working with its own on−disk database formats. The most notable feature of

this format is that ovsdb−tool(1) makes it easy for users to print the transactions that have changed a data-

base since the last time it was compacted. This feature is often useful for troubleshooting.

SCHEMAS
Schemas in OVSDB have a JSON format that is specified in RFC 7047. They are often stored in files with

an extension .ovsschema. An on−disk database in OVSDB includes a schema and data, embedding both

into a single file. The Open vSwitch utility ovsdb−tool has commands that work with schema files and

with the schemas embedded in database files.

An Open vSwitch schema has three important identifiers. The first is its name, which is also the name used

in JSON−RPC calls to identify a database based on that schema. For example, the schema used to config-

ure Open vSwitch has the name Open_vSwitch. Schema names begin with a letter or an underscore, fol-

lowed by any number of letters, underscores, or digits. The ovsdb−tool commands schema−name and

db−name extract the schema name from a schema or database file, respectively.

An OVSDB schema also has a version of the form x.y.z e.g. 1.2.3. Schemas managed within the Open

vSwitch project manage version numbering in the following way (but OVSDB does not mandate this ap-

proach). Whenever we change the database schema in a non−backward compatible way (e.g. when we

delete a column or a table), we increment <x> and set <y> and <z> to 0. When we change the database

schema in a backward compatible way (e.g. when we add a new column), we increment <y> and set <z> to

3.5 Feb 17, 2025 1



OVSDB(7) Open vSwitch OVSDB(7)

0. When we change the database schema cosmetically (e.g. we reindent its syntax), we increment <z>.

The ovsdb−tool commands schema−version and db−version extract the schema version from a schema or

database file, respectively.

Very old OVSDB schemas do not have a version, but RFC 7047 mandates it.

An OVSDB schema optionally has a “checksum.” RFC 7047 does not specify the use of the checksum and

recommends that clients ignore it. Open vSwitch uses the checksum to remind developers to update the

version: at build time, if the schema’s embedded checksum, ignoring the checksum field itself, does not

match the schema’s content, then it fails the build with a recommendation to update the version and the

checksum. Thus, a dev eloper who changes the schema, but does not update the version, receives an auto-

matic reminder. In practice this has been an effective way to ensure compliance with the version number

policy. The ovsdb−tool commands schema−cksum and db−cksum extract the schema checksum from a

schema or database file, respectively.

SERVICE MODELS
OVSDB supports four service models for databases: standalone, active−backup, relay and clustered.

The service models provide different compromises among consistency, availability, and partition tolerance.

They also differ in the number of servers required and in terms of performance. The standalone and ac-

tive−backup database service models share one on−disk format, and clustered databases use a different for-

mat, but the OVSDB programs work with both formats. ovsdb(5) documents these file formats. Relay

databases have no on−disk storage.

RFC 7047, which specifies the OVSDB protocol, does not mandate or specify any particular service model.

The following sections describe the individual service models.

Standalone Database Service Model

A standalone database runs a single server. If the server stops running, the database becomes inaccessible,

and if the server’s storage is lost or corrupted, the database’s content is lost. This service model is appropri-

ate when the database controls a process or activity to which it is linked via “fate−sharing.” For example,

an OVSDB instance that controls an Open vSwitch virtual switch daemon, ovs−vswitchd, is a standalone

database because a server failure would take out both the database and the virtual switch.

To set up a standalone database, use ovsdb−tool create to create a database file, then run ovsdb−server to

start the database service.

To configure a client, such as ovs−vswitchd or ovs−vsctl, to use a standalone database, configure the server

to listen on a “connection method” that the client can reach, then point the client to that connection method.

See Connection Methods below for information about connection methods.

Open vSwitch 3.3 introduced support for configuration files via −−config−file command line option. The

configuration file for a server with a standalone database may look like this:

{

"remotes": { "<connection method>": {} },

"databases": { "<database file>": {} }

}

ovsdb−server will infer the service model from the database file itself. However, if additional verification

is desired, an optional "service−model": "standalone" can be provided for the database file inside the in-

ner curly braces. If the specified service−model will not match the content of the database file,

ovsdb−server will refuse to open this database.

3.5 Feb 17, 2025 2



OVSDB(7) Open vSwitch OVSDB(7)

Active−Backup Database Service Model

An active−backup database runs two servers (on different hosts). At any giv en time, one of the servers is

designated with the active role and the other the backup role. An active server behaves just like a stand-

alone server. A backup server makes an OVSDB connection to the active server and uses it to continuously

replicate its content as it changes in real time. OVSDB clients can connect to either server but only the ac-

tive server allows data modification or lock transactions.

Setup for an active−backup database starts from a working standalone database service, which is initially

the active server. On another node, to set up a backup server, create a database file with the same schema as

the active server. The initial contents of the database file do not matter, as long as the schema is correct, so

ovsdb−tool create will work, as will copying the database file from the active server. Then use

ovsdb−server −−sync−from=<active> to start the backup server, where <active> is an OVSDB connection

method (see Connection Methods below) that connects to the active server. At that point, the backup server

will fetch a copy of the active database and keep it up−to−date until it is killed.

Open vSwitch 3.3 introduced support for configuration files via −−config−file command line option. The

configuration file for a backup server in this case may look like this:

{

"remotes": { "<connection method>": {} },

"databases": {

"<database file>": {

"service−model": "active−backup",

"backup": true,

"source": {

"<active>": {

"inactivity−probe": <integer>,

"max−backoff": <integer>

}

}

}

}

}

All the fields in the "<database file>" description above are required. Options for the "<active>" connec-

tion method ("inactivity−probe", etc.) can be omitted.

When the active server in an active−backup server pair fails, an administrator can switch the backup server

to an active role with the ovs−appctl command ovsdb−server/disconnect−active−ovsdb−server. Clients

then have read/write access to the now−active server. When the −−config−file is in use, the same can be

achieved by changing the "backup" value in the file and running ovsdb−server/reload command. Of

course, administrators are slow to respond compared to software, so in practice external management soft-

ware detects the active server’s failure and changes the backup server’s role. For example, the “Integration

Guide for Centralized Control” in the OVN documentation describes how to use Pacemaker for this purpose

in OVN.

Suppose an active server fails and its backup is promoted to active. If the failed server is revived, it must be

started as a backup server. Otherwise, if both servers are active, then they may start out of sync, if the data-

base changed while the server was down, and they will continue to diverge over time. This also happens if

the software managing the database servers cannot reach the active server and therefore switches the

backup to active, but other hosts can reach both servers. These “split−brain” problems are unsolvable in

general for server pairs.

Compared to a standalone server, the active−backup service model somewhat increases availability, at a risk

3.5 Feb 17, 2025 3



OVSDB(7) Open vSwitch OVSDB(7)

of split−brain. It adds generally insignificant performance overhead. On the other hand, the clustered ser-

vice model, discussed below, requires at least 3 servers and has greater performance overhead, but it avoids

the need for external management software and eliminates the possibility of split−brain.

Open vSwitch 2.6 introduced support for the active−backup service model.

IMPORTANT:

There was a change of a database file format in version 2.15. To upgrade/downgrade the ovsdb−server

processes across this version follow the instructions described under Upgrading from version 2.14 and

earlier to 2.15 and later and Downgrading from version 2.15 and later to 2.14 and earlier.

Another change happened in version 3.2. To upgrade/downgrade the ovsdb−server processes across

this version follow the instructions described under Upgrading from version 3.1 and earlier to 3.2 and

later and Downgrading from version 3.2 and later to 3.1 and earlier.

Clustered Database Service Model

A clustered database runs across 3 or 5 or more database servers (the cluster) on different hosts. Servers

in a cluster automatically synchronize writes within the cluster. A 3−server cluster can remain available in

the face of at most 1 server failure; a 5−server cluster tolerates up to 2 failures. Clusters larger than 5

servers will also work, with every 2 added servers allowing the cluster to tolerate 1 more failure, but write

performance decreases. The number of servers should be odd: a 4− or 6−server cluster cannot tolerate

more failures than a 3− or 5−server cluster, respectively.

To set up a clustered database, first initialize it on a single node by running ovsdb−tool create−cluster,

then start ovsdb−server. Depending on its arguments, the create−cluster command can create an empty

database or copy a standalone database’s contents into the new database.

Open vSwitch 3.3 introduced support for configuration files via −−config−file command line option. The

configuration file for a server with a clustered database may look like this:

{

"remotes": { "<connection method>": {} },

"databases": { "<database file>": {} }

}

ovsdb−server will infer the service model from the database file itself. However, if additional verification

is desired, an optional "service−model": "clustered" can be provided for the database file inside the inner

curly braces. If the specified service−model will not match the content of the database file, ovsdb−server

will refuse to open this database.

To configure a client to use a clustered database, first configure all of the servers to listen on a connection

method that the client can reach, then point the client to all of the servers’ connection methods,

comma−separated. See Connection Methods, below, for more detail.

Open vSwitch 2.9 introduced support for the clustered service model.

How to Maintain a Clustered Database

To add a server to a cluster, run ovsdb−tool join−cluster on the new server and start ovsdb−server. To re-

move a running server from a cluster, use ovs−appctl to invoke the cluster/leave command. When a server

fails and cannot be recovered, e.g. because its hard disk crashed, or to otherwise remove a server that is

down from a cluster, use ovs−appctl to invoke cluster/kick to make the remaining servers kick it out of the

cluster.

The above methods for adding and removing servers only work for healthy clusters, that is, for clusters with

no more failures than their maximum tolerance. For example, in a 3−server cluster, the failure of 2 servers

prevents servers joining or leaving the cluster (as well as database access).

3.5 Feb 17, 2025 4



OVSDB(7) Open vSwitch OVSDB(7)

To prevent data loss or inconsistency, the preferred solution to this problem is to bring up enough of the

failed servers to make the cluster healthy again, then if necessary remove any remaining failed servers and

add new ones. If this is not an option, see the next section for Manual cluster recovery.

Once a server leaves a cluster, it may never rejoin it. Instead, create a new server and join it to the cluster.

The servers in a cluster synchronize data over a cluster management protocol that is specific to Open

vSwitch; it is not the same as the OVSDB protocol specified in RFC 7047. For this purpose, a server in a

cluster is tied to a particular IP address and TCP port, which is specified in the ovsdb−tool command that

creates or joins the cluster. The TCP port used for clustering must be different from that used for OVSDB

clients. To change the port or address of a server in a cluster, first remove it from the cluster, then add it

back with the new address.

To upgrade the ovsdb−server processes in a cluster from one version of Open vSwitch to another, upgrad-

ing them one at a time will keep the cluster healthy during the upgrade process. (This is different from up-

grading a database schema, which is covered later under Upgrading or Downgrading a Database.)

IMPORTANT:

There was a change of a database file format in version 2.15. To upgrade/downgrade the ovsdb−server

processes across this version follow the instructions described under Upgrading from version 2.14 and

earlier to 2.15 and later and Downgrading from version 2.15 and later to 2.14 and earlier.

Another change happened in version 3.2. To upgrade/downgrade the ovsdb−server processes across

this version follow the instructions described under Upgrading from version 3.1 and earlier to 3.2 and

later and Downgrading from version 3.2 and later to 3.1 and earlier.

Clustered OVSDB does not support the OVSDB “ephemeral columns” feature. ovsdb−tool and

ovsdb−client change ephemeral columns into persistent ones when they work with schemas for clustered

databases. Future versions of OVSDB might add support for this feature.

Manual cluster recovery

IMPORTANT:

The procedure below will result in cid and sid change. A new cluster will be initialized.

To recover a clustered database after a failure:

1. Stop all old cluster ovsdb−server instances before proceeding.

2. Pick one of the old members which will serve as a bootstrap member of the to−be−recovered cluster.

3. Convert its database file to the standalone format using ovsdb−tool cluster−to−standalone.

4. Backup the standalone database file.

5. Create a new single−node cluster with ovsdb−tool create−cluster using the previously saved stand-

alone database file, then start ovsdb−server.

6. Once the single−node cluster is up and running and serves the restored data, new members should be

created and added to the cluster, as usual, with ovsdb−tool join−cluster.

NOTE:

The data in the new cluster may be inconsistent with the former cluster: transactions not yet replicated

to the server chosen in step 2 will be lost, and transactions not yet applied to the cluster may be com-

mitted.

Upgrading from version 2.14 and earlier to 2.15 and later

There is a change of a database file format in version 2.15 that doesn’t allow older versions of

ovsdb−server to read the database file modified by the ovsdb−server version 2.15 or later. This also af-

fects runtime communications between servers in active−backup and cluster service models. To upgrade

3.5 Feb 17, 2025 5



OVSDB(7) Open vSwitch OVSDB(7)

the ovsdb−server processes from one version of Open vSwitch (2.14 or earlier) to another (2.15 or higher)

instructions below should be followed. (This is different from upgrading a database schema, which is cov-

ered later under Upgrading or Downgrading a Database.)

In case of standalone service model no special handling during upgrade is required.

For the active−backup service model, administrator needs to update backup ovsdb−server first and the ac-

tive one after that, or shut down both servers and upgrade at the same time.

For the cluster service model recommended upgrade strategy is following:

1. Upgrade processes one at a time. Each ovsdb−server process after upgrade should be started with

−−disable−file−column−diff command line argument.

2. When all ovsdb−server processes upgraded, use ovs−appctl to invoke ovsdb/file/column−diff−enable

command on each of them or restart all ovsdb−server processes one at a time without −−dis-

able−file−column−diff command line option.

Downgrading from version 2.15 and later to 2.14 and earlier

Similar to upgrading covered under Upgrading from version 2.14 and earlier to 2.15 and later, downgrad-

ing from the ovsdb−server version 2.15 and later to 2.14 and earlier requires additional steps. (This is dif-

ferent from upgrading a database schema, which is covered later under Upgrading or Downgrading a Data-

base.)

For all service models it’s required to:

1. Stop all ovsdb−server processes (single process for standalone service model, all involved processes

for active−backup and cluster service models).

2. Compact all database files with ovsdb−tool compact command.

3. Downgrade and restart ovsdb−server processes.

Upgrading from version 3.1 and earlier to 3.2 and later

There is another change of a database file format in version 3.2 that doesn’t allow older versions of

ovsdb−server to read the database file modified by the ovsdb−server version 3.2 or later. This also affects

runtime communications between servers in cluster service models. To upgrade the ovsdb−server

processes from one version of Open vSwitch (3.1 or earlier) to another (3.2 or higher) instructions below

should be followed. (This is different from upgrading a database schema, which is covered later under

Upgrading or Downgrading a Database.)

In case of standalone or active−backup service model no special handling during upgrade is required.

For the cluster service model recommended upgrade strategy is following:

1. Upgrade processes one at a time. Each ovsdb−server process after upgrade should be started with

−−disable−file−no−data−conversion command line argument.

2. When all ovsdb−server processes upgraded, use ovs−appctl to invoke ovsdb/file/no−data−conver-

sion−enable command on each of them or restart all ovsdb−server processes one at a time without

−−disable−file−no−data−conversion command line option.

Downgrading from version 3.2 and later to 3.1 and earlier

Similar to upgrading covered under Upgrading from version 3.1 and earlier to 3.2 and later, downgrading

from the ovsdb−server version 3.2 and later to 3.1 and earlier requires additional steps. (This is different

from upgrading a database schema, which is covered later under Upgrading or Downgrading a Database.)

For all service models it’s required to:

3.5 Feb 17, 2025 6



OVSDB(7) Open vSwitch OVSDB(7)

1. Compact all database files via ovsdb−server/compact command with ovs−appctl utility. This should

be done for each involved ovsdb−server process separately (single process for standalone service

model, all involved processes for active−backup and cluster service models).

2. Stop all ovsdb−server processes. Make sure that no database schema conversion operations were per-

formed between steps 1 and 2. For standalone and active−backup service models, the database com-

paction can be performed after stopping all the processes instead with the ovsdb−tool compact com-

mand.

3. Downgrade and restart ovsdb−server processes.

Understanding Cluster Consistency

To ensure consistency, clustered OVSDB uses the Raft algorithm described in Diego Ongaro’s Ph.D. thesis,

“Consensus: Bridging Theory and Practice”. In an operational Raft cluster, at any giv en time a single

server is the “leader” and the other nodes are “followers”. Only the leader processes transactions, but a

transaction is only committed when a majority of the servers confirm to the leader that they hav e written it

to persistent storage.

In most database systems, read and write access to the database happens through transactions. In such a

system, Raft allows a cluster to present a strongly consistent transactional interface. OVSDB uses conven-

tional transactions for writes, but clients often effectively do reads a different way, by asking the server to

“monitor” a database or a subset of one on the client’s behalf. Whenever monitored data changes, the

server automatically tells the client what changed, which allows the client to maintain an accurate snapshot

of the database in its memory. Of course, at any giv en time, the snapshot may be somewhat dated since

some of it could have changed without the change notification yet being received and processed by the

client.

Given this unconventional usage model, OVSDB also adopts an unconventional clustering model. Each

server in a cluster acts independently for the purpose of monitors and read−only transactions, without veri-

fying that data is up−to−date with the leader. Servers forward transactions that write to the database to the

leader for execution, ensuring consistency. This has the following consequences:

• Transactions that involve writes, against any server in the cluster, are linearizable if clients take care to

use correct prerequisites, which is the same condition required for linearizability in a standalone

OVSDB. (Actually, “at−least−once” consistency, because OVSDB does not have a session mechanism

to drop duplicate transactions if a connection drops after the server commits it but before the client re-

ceives the result.)

• Read−only transactions can yield results based on a stale version of the database, if they are executed

against a follower. Transactions on the leader always yield fresh results. (With monitors, as explained

above, a client can always see stale data even without clustering, so clustering does not change the con-

sistency model for monitors.)

• Monitor−based (or read−heavy) workloads scale well across a cluster, because clustering OVSDB adds

no additional work or communication for reads and monitors.

• A write−heavy client should connect to the leader, to avoid the overhead of followers forwarding transac-

tions to the leader.

• When a client conducts a mix of read and write transactions across more than one server in a cluster, it

can see inconsistent results because a read transaction might read stale data whose updates have not yet

propagated from the leader. By default, utilities such as ovn−sbctl (in OVN) connect to the cluster

leader to avoid this issue.

The same might occur for transactions against a single follower except that the OVSDB server ensures

that the results of a write forwarded to the leader by a given server are visible at that server before it

replies to the requesting client.

3.5 Feb 17, 2025 7



OVSDB(7) Open vSwitch OVSDB(7)

• If a client uses a database on one server in a cluster, then another server in the cluster (perhaps because

the first server failed), the client could observe stale data. Clustered OVSDB clients, however, can use a

column in the _Server database to detect that data on a server is older than data that the client previously

read. The OVSDB client library in Open vSwitch uses this feature to avoid servers with stale data.

Relay Service Model

A relay database is a way to scale out read−mostly access to the existing database working in any service

model including relay.

Relay database creates and maintains an OVSDB connection with another OVSDB server. It uses this con-

nection to maintain an in−memory copy of the remote database (a.k.a. the relay source) keeping the copy

up−to−date as the database content changes on the relay source in the real time.

The purpose of relay server is to scale out the number of database clients. Read−only transactions and

monitor requests are fully handled by the relay server itself. For the transactions that request database mod-

ifications, relay works as a proxy between the client and the relay source, i.e. it forwards transactions and

replies between them.

Compared to the clustered and active−backup models, relay service model provides read and write access

to the database similarly to a clustered database (and even more scalable), but with generally insignificant

performance overhead of an active−backup model. At the same time it doesn’t increase availability that

needs to be covered by the service model of the relay source.

Relay database has no on−disk storage and therefore cannot be converted to any other service model.

If there is already a database started in any service model, to start a relay database server use ovsdb−server

relay:<DB_NAME>:<relay source>, where <DB_NAME> is the database name as specified in the

schema of the database that existing server runs, and <relay source> is an OVSDB connection method (see

Connection Methods below) that connects to the existing database server. <relay source> could contain a

comma−separated list of connection methods, e.g. to connect to any server of the clustered database. Mul-

tiple relay servers could be started for the same relay source.

Open vSwitch 3.3 introduced support for configuration files via −−config−file command line option. The

configuration file for a relay database server in this case may look like this:

{

"remotes": { "<connection method>": {} },

"databases": {

"<DB_NAME>": {

"service−model": "relay",

"source": {

"<relay source>": {

"inactivity−probe": <integer>,

"max−backoff": <integer>

}

}

}

}

}

Both the "service−model" and the "source" are required. Options for the "<relay source>" connection

method ("inactivity−probe", etc.) can be omitted.

Since the way relays handle read and write transactions is very similar to the clustered model where “clus-

ter” means “set of relay servers connected to the same relay source”, “follower” means “relay server” and

3.5 Feb 17, 2025 8



OVSDB(7) Open vSwitch OVSDB(7)

the “leader” means “relay source”, same consistency consequences as for the clustered model applies to re-

lay as well (See Understanding Cluster Consistency above).

Open vSwitch 2.16 introduced support for relay service model.

DATABASE REPLICATION
OVSDB can layer replication on top of any of its service models. Replication, in this context, means to

make, and keep up−to−date, a read−only copy of the contents of a database (the replica). One use of repli-

cation is to keep an up−to−date backup of a database. A replica used solely for backup would not need to

support clients of its own. A set of replicas that do serve clients could be used to scale out read access to

the primary database, however Relay Service Model is more suitable for that purpose.

A database replica is set up in the same way as a backup server in an active−backup pair, with the differ-

ence that the replica is never promoted to an active role.

A database can have multiple replicas.

Open vSwitch 2.6 introduced support for database replication.

CONNECTION METHODS
An OVSDB connection method is a string that specifies how to make a JSON−RPC connection between

an OVSDB client and server. Connection methods are part of the Open vSwitch implementation of

OVSDB and not specified by RFC 7047. ovsdb−server uses connection methods to specify how it should

listen for connections from clients and ovsdb−client uses them to specify how it should connect to a server.

Connections in the opposite direction, where ovsdb−server connects to a client that is configured to listen

for an incoming connection, are also possible.

Connection methods are classified as active or passive. An active connection method makes an outgoing

connection to a remote host; a passive connection method listens for connections from remote hosts. The

most common arrangement is to configure an OVSDB server with passive connection methods and clients

with active ones, but the OVSDB implementation in Open vSwitch supports the opposite arrangement as

well.

OVSDB supports the following active connection methods:

ssl:<host>:<port>

The specified SSL/TLS <port> on the given <host>.

tcp:<host>:<port>

The specified TCP <port> on the given <host>.

unix:<file>

On Unix−like systems, connect to the Unix domain server socket named <file>.

On Windows, connect to a local named pipe that is represented by a file created in the path <file>

to mimic the behavior of a Unix domain socket.

<method1>,<method2>,…,<methodN>

For a clustered database service to be highly available, a client must be able to connect to any of

the servers in the cluster. To do so, specify connection methods for each of the servers separated

by commas (and optional spaces).

In theory, if machines go up and down and IP addresses change in the right way, a client could talk

to the wrong instance of a database. To avoid this possibility, add cid:<uuid> to the list of meth-

ods, where <uuid> is the cluster ID of the desired database cluster, as printed by ovsdb−tool

db−cid. This feature is optional.

OVSDB supports the following passive connection methods:

3.5 Feb 17, 2025 9



OVSDB(7) Open vSwitch OVSDB(7)

pssl:<port>[:<ip>]

Listen on the given TCP <port> for SSL/TLS connections. By default, connections are not bound

to a particular local IP address. Specifying <ip> limits connections to those from the given IP.

ptcp:<port>[:<ip>]

Listen on the given TCP <port>. By default, connections are not bound to a particular local IP ad-

dress. Specifying <ip> limits connections to those from the given IP.

punix:<file>

On Unix−like systems, listens for connections on the Unix domain socket named <file>.

On Windows, listens on a local named pipe, creating a named pipe <file> to mimic the behavior of

a Unix domain socket. The ACLs of the named pipe include LocalSystem, Administrators, and

Creator Owner.

All IP−based connection methods accept IPv4 and IPv6 addresses. To specify an IPv6 address, wrap it in

square brackets, e.g. ssl:[::1]:6640. Passive IP−based connection methods by default listen for IPv4 con-

nections only; use [::] as the address to accept both IPv4 and IPv6 connections, e.g. pssl:6640:[::]. DNS

names are also accepted if built with unbound library. On Linux, use %<device> to designate a scope for

IPv6 link−level addresses, e.g. ssl:[fe80::1234%eth0]:6653.

The <port> may be omitted from connection methods that use a port number. The default <port> for

TCP−based connection methods is 6640, e.g. pssl: is equivalent to pssl:6640. In Open vSwitch prior to

version 2.4.0, the default port was 6632. To avoid incompatibility between older and newer versions, we

encourage users to specify a port number.

The ssl and pssl connection methods requires additional configuration through −−private−key, −−certifi-

cate, and −−ca−cert command line options. Open vSwitch can be built without SSL/TLS support, in

which case these connection methods are not supported.

DATABASE LIFE CYCLE
This section describes how to handle various events in the life cycle of a database using the Open vSwitch

implementation of OVSDB.

Creating a Database

Creating and starting up the service for a new database was covered separately for each database service

model in the Service Models section, above. A single ovsdb−server process may serve any number of

databases with different service models at the same time.

Backing Up and Restoring a Database

OVSDB is often used in contexts where the database contents are not particularly valuable. For example, in

many systems, the database for configuring ovs−vswitchd is essentially rebuilt from scratch at boot time. It

is not worthwhile to back up these databases.

When OVSDB is used for valuable data, a backup strategy is worth considering. One way is to use data-

base replication, discussed above in Database Replication which keeps an online, up−to−date copy of a

database, possibly on a remote system. This works with all OVSDB service models.

A more common backup strategy is to periodically take and store a snapshot. For the standalone and ac-

tive−backup service models, making a copy of the database file, e.g. using cp, effectively makes a snapshot,

and because OVSDB database files are append−only, it works even if the database is being modified when

the snapshot takes place. This approach does not work for clustered databases.

Another way to make a backup, which works with all OVSDB service models, is to use ovsdb−client

backup, which connects to a running database server and outputs an atomic snapshot of its schema and

content, in the same format used for standalone and active−backup databases.

3.5 Feb 17, 2025 10



OVSDB(7) Open vSwitch OVSDB(7)

Multiple options are also available when the time comes to restore a database from a backup. For the

standalone and active−backup service models, one option is to stop the database server or servers, overwrite

the database file with the backup (e.g. with cp), and then restart the servers. Another way, which works

with any service model, is to use ovsdb−client restore, which connects to a running database server and re-

places the data in one of its databases by a provided snapshot. The advantage of ovsdb−client restore is

that it causes zero downtime for the database and its server. It has the downside that UUIDs of rows in the

restored database will differ from those in the snapshot, because the OVSDB protocol does not allow clients

to specify row UUIDs.

None of these approaches saves and restores data in columns that the schema designates as ephemeral.

This is by design: the designer of a schema only marks a column as ephemeral if it is acceptable for its data

to be lost when a database server restarts.

Clustering and backup serve different purposes. Clustering increases availability, but it does not protect

against data loss if, for example, a malicious or malfunctioning OVSDB client deletes or tampers with data.

Changing Database Service Model

Use ovsdb−tool create−cluster to create a clustered database from the contents of a standalone database.

Use ovsdb−client backup to create a standalone database from the contents of a running clustered data-

base. When the cluster is down and cannot be revived, ovsdb−client backup will not work.

Use ovsdb−tool cluster−to−standalone to convert clustered database to standalone database when the

cluster is down and cannot be revived.

Upgrading or Downgrading a Database

The evolution of a piece of software can require changes to the schemas of the databases that it uses. For

example, new features might require new tables or new columns in existing tables, or conceptual changes

might require a database to be reorganized in other ways. In some cases, the easiest way to deal with a

change in a database schema is to delete the existing database and start fresh with the new schema, espe-

cially if the data in the database is easy to reconstruct. But in many other cases, it is better to convert the

database from one schema to another.

The OVSDB implementation in Open vSwitch has built−in support for some simple cases of converting a

database from one schema to another. This support can handle changes that add or remove database

columns or tables or that eliminate constraints (for example, changing a column that must have exactly one

value into one that has one or more values). It can also handle changes that add constraints or make them

stricter, but only if the existing data in the database satisfies the new constraints (for example, changing a

column that has one or more values into a column with exactly one value, if every row in the column has

exactly one value). The built−in conversion can cause data loss in obvious ways, for example if the new

schema removes tables or columns, or indirectly, for example by deleting unreferenced rows in tables that

the new schema marks for garbage collection.

Converting a database can lose data, so it is wise to make a backup beforehand.

To use OVSDB’s built−in support for schema conversion with a standalone or active−backup database, first

stop the database server or servers, then use ovsdb−tool convert to convert it to the new schema, and then

restart the database server.

OVSDB also supports online database schema conversion for any of its database service models. To con-

vert a database online, use ovsdb−client convert. The conversion is atomic, consistent, isolated, and

durable. ovsdb−server disconnects any clients connected when the conversion takes place (except clients

that use the set_db_change_aware Open vSwitch extension RPC). Upon reconnection, clients will dis-

cover that the schema has changed.

Schema versions and checksums (see Schemas above) can give hints about whether a database needs to be

converted to a new schema. If there is any question, though, the needs−conversion command on

3.5 Feb 17, 2025 11



OVSDB(7) Open vSwitch OVSDB(7)

ovsdb−tool and ovsdb−client can provide a definitive answer.

Working with Database History

Both on−disk database formats that OVSDB supports are organized as a stream of transaction records.

Each record describes a change to the database as a list of rows that were inserted or deleted or modified,

along with the details. Therefore, in normal operation, a database file only grows, as each change causes

another record to be appended at the end. Usually, a user has no need to understand this file structure. This

section covers some exceptions.

Compacting Databases

If OVSDB database files were truly append−only, then over time they would grow without bound. To avoid

this problem, OVSDB can compact a database file, that is, replace it by a new version that contains only

the current database contents, as if it had been inserted by a single transaction. From time to time,

ovsdb−server automatically compacts a database that grows much larger than its minimum size.

Because ovsdb−server automatically compacts databases, it is usually not necessary to compact them man-

ually, but OVSDB still offers a few ways to do it. First, ovsdb−tool compact can compact a standalone or

active−backup database that is not currently being served by ovsdb−server (or otherwise locked for writing

by another process). To compact any database that is currently being served by ovsdb−server, use ovs−ap-

pctl to send the ovsdb−server/compact command. Each server in an active−backup or clustered database

maintains its database file independently, so to compact all of them, issue this command separately on each

server.

Viewing History

The ovsdb−tool utility’s show−log command displays the transaction records in an OVSDB database file in

a human−readable format. By default, it shows minimal detail, but adding the option −m once or twice in-

creases the level of detail. In addition to the transaction data, it shows the time and date of each transaction

and any “comment” added to the transaction by the client. The comments can be helpful for quickly under-

standing a transaction; for example, ovs−vsctl adds its command line to the transactions that it makes.

The show−log command works with both OVSDB file formats, but the details of the output format differ.

For active−backup and clustered databases, the sequence of transactions in each server’s log will differ,

ev en at points when they reflect the same data.

Truncating History

It may occasionally be useful to “roll back” a database file to an earlier point. Because of the organization

of OVSDB records, this is easy to do. Start by noting the record number <i> of the first record to delete in

ovsdb−tool show−log output. Each record is two lines of plain text, so trimming the log is as simple as

running head −n <j>, where <j> = 2 * <i>.

Corruption

When ovsdb−server opens an OVSDB database file, of any kind, it reads as many transaction records as it

can from the file until it reaches the end of the file or it encounters a corrupted record. At that point it stops

reading and regards the data that it has read to this point as the full contents of the database file, effectively

rolling the database back to an earlier point.

Each transaction record contains an embedded SHA−1 checksum, which the server verifies as it reads a

database file. It detects corruption when a checksum fails to verify. Even though SHA−1 is no longer con-

sidered secure for use in cryptography, it is acceptable for this purpose because it is not used to defend

against malicious attackers.

The first record in a standalone or active−backup database file specifies the schema. ovsdb−server will

refuse to work with a database where this record is corrupted, or with a clustered database file with corrup-

tion in the first few records. Delete and recreate such a database, or restore it from a backup.

When ovsdb−server adds records to a database file in which it detected corruption, it first truncates the file

just after the last good record.

3.5 Feb 17, 2025 12



OVSDB(7) Open vSwitch OVSDB(7)

SEE ALSO
RFC 7047, “The Open vSwitch Database Management Protocol.”

Open vSwitch implementations of generic OVSDB functionality: ovsdb−server(1), ovsdb−client(1),

ovsdb−tool(1).

Tools for working with databases that have specific OVSDB schemas: ovs−vsctl(8), vtep−ctl(8), and (in

OVN) ovn−nbctl(8), ovn−sbctl(8).

OVSDB schemas for Open vSwitch and related functionality: ovs−vswitchd.conf.db(5), vtep(5), and (in

OVN) ovn−nb(5), ovn−sb(5).

AUTHOR
The Open vSwitch Development Community

COPYRIGHT
2016-2024, The Open vSwitch Development Community

3.5 Feb 17, 2025 13


