OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

NAME

ovsdb-server — Open vSwitch Database Server Protocol

DESCRIPTION

3.5

ovsdb-server implements the Open vSwitch Database (OVSDB) protocol specified in RFC 7047. This
document provides clarifications for how ovsdb—server implements the protocol and describes the exten-

sions that it provides beyond RFC 7047. Numbers in section headings refer to corresponding sections in
RFC 7047.

3.1 JSON Usage

RFC 4627 says that names within a JSON object should be unique. The Open vSwitch JSON parser dis-
cards all but the last value for a name that is specified more than once.

The definition of <error> allows for implementation extensions. Currently ovsdb—server uses the follow-
ing additional error strings (which might change in later releases):

syntax error or unknown column
The request could not be parsed as an OVSDB request. An additional syntax member, whose
value is a string that contains JSON, may narrow down the particular syntax that could not be
parsed.

internal error
The request triggered a bug in ovsdb—server.

ovsdb error
A map or set contains a duplicate key.

permission error
The request was denied by the role—based access control extension, introduced in version 2.8.

3.2 Schema Format

RFC 7047 requires the version field in <database—schema>. Current versions of ovsdb—server allow it to
be omitted (future versions are likely to require it).

RFC 7047 allows columns that contain weak references to be immutable. This raises the issue of the be-
havior of the weak reference when the rows that it references are deleted. Since version 2.6, ovsdb—server
forces columns that contain weak references to be mutable.

Since version 2.8, the table name RBAC_Role is used internally by the role—based access control extension
to ovsdb—server and should not be used for purposes other than defining mappings of role names to table
access permissions. This table has one row per role name and the following columns:

name The role name.

permissions
A map of table name to a reference to a row in a separate permission table.

The separate RBAC permission table has one row per access control configuration and the following
columns:

name The name of the table to which the row applies.

authorization
The set of column names and column:key pairs to be compared with the client ID in order to deter-
mine the authorization status of the requested operation.

insert_delete
A boolean value, true if authorized insertions and deletions are allowed, false if no insertions or
deletions are allowed.

Feb 17, 2025 1



OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

3.5

update The set of columns and column:key pairs for which authorized update and mutate operations
should be permitted.

4 Wire Protocol

The original OVSDB specifications included the following reasons, omitted from RFC 7047, to operate
JSON-RPC directly over a stream instead of over HTTP:

* JSON-RPC is a peer—to—peer protocol, but HTTP is a client—server protocol, which is a poor match.
Thus, JSON-RPC over HTTP requires the client to periodically poll the server to receive server requests.

* HTTP is more complicated than stream connections and doesn’t provide any corresponding advantage.

* The JSON-RPC specification for HTTP transport is incomplete.

4.1.3 Transact

Since version 2.8, role—based access controls can be applied to operations within a transaction that would
modify the contents of the database (these operations include row insert, row delete, column update, and
column mutate). Role—based access controls are applied when the database schema contains a table with
the name RBAC_Role and the connection on which the transaction request was received has an associated
role name (from the role column in the remote connection table). When role—based access controls are en-
abled, transactions that are otherwise well-formed may be rejected depending on the client’s role, ID, and
the contents of the RBAC_Role table and associated permissions table.

4.1.5 Monitor

For backward compatibility, ovsdb—server currently permits a single <monitor-request> to be used instead
of an array; it is treated as a single—element array. Future versions of ovsdb-server might remove this
compatibility feature.

Because the <json—value> parameter is used to match subsequent update notifications (see below) to the re-
quest, it must be unique among all active monitors. ovsdb—server rejects attempt to create two monitors
with the same identifier.

When a given client sends a transact request that changes a table that the same client is monitoring,
ovsdb-server always sends the update (or update2 or update3) for these changes before it sends the reply
to the tramsact request. Thus, when a client receives a transact reply, it can know immediately what
changes (if any) the transaction made. (If ovsdb—server might use the other order, then a client that wishes
to act on based on the results of its own transactions would not know when this was guaranteed to have
taken place.)

4.1.7 Monitor Cancellation

When a database monitored by a session is removed, and database change awareness is enabled for the ses-
sion (see Section 4.1.16), the database server spontaneously cancels all monitors (including conditional
monitors described in Section 4.1.12) for the removed database. For each canceled monitor, it issues a noti-
fication in the following form:

"method": "monitor_canceled"
"params": [<json-value>]
"id": null

4.1.12 Monitor_cond

A new monitor method added in Open vSwitch version 2.6. The monitor_cond request enables a client to
replicate subsets of tables within an OVSDB database by requesting notifications of changes to rows match-
ing one of the conditions specified in where by receiving the specified contents of these rows when table
updates occur. monitor_cond also allows a more efficient update notifications by receiving <table—up-
dates2> notifications (described below).

The monitor method described in Section 4.1.5 also applies to monitor_cond, with the following excep-
tions:

Feb 17, 2025 2



OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

3.5

* RPC request method becomes monitor_cond.
* Reply result follows <table—updates2>, described in Section 4.1.14.

» Subsequent changes are sent to the client using the update2 monitor notification, described in Section
4.1.14

» Update notifications are being sent only for rows matching [<condition>*].
The request object has the following members:
"method": "monitor_cond"
"params": [<db-name>, <json-value>, <monitor-cond-requests>]

"id": <nonnull-json-value>

The <json—value> parameter is used to match subsequent update notifications (see below) to this request.
The <monitor—cond—requests> object maps the name of the table to an array of <monitor—cond—-request>.

Each <monitor—cond—request> is an object with the following members:

"columns": [<column>¥*] optional
"where": [<condition>*] optional
"select": <monitor-select> optional

The columns, if present, define the columns within the table to be monitored that match conditions. If not
present, all columns are monitored.

The where, if present, is a JSON array of <condition> and boolean values. If not present or condition is an
empty array, implicit True will be considered and updates on all rows will be sent.

<monitor—select> is an object with the following members:

"initial": <boolean> optional
"insert": <boolean> optional
"delete": <boolean> optional
"modify": <boolean> optional

The contents of this object specify how the columns or table are to be monitored as explained in more detail
below.

The response object has the following members:

"result": <table-updates2>
"error": null
"id": same "id" as request

The <table—updates2> object is described in detail in Section 4.1.14. It contains the contents of the tables
for which initial rows are selected. If no tables initial contents are requested, then result is an empty ob-
ject.

Subsequently, when changes to a specified table that match one of the conditions in <monitor—cond-re-
quest> are committed, the changes are automatically sent to the client using the update2 monitor notifica-
tion (see Section 4.1.14). This monitoring persists until the JSON-RPC session terminates or until the

client sends a monitor_cancel JSON-RPC request.

Each <monitor-cond-request> specifies one or more conditions and the manner in which the rows that

Feb 17, 2025 3



OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

3.5

match the conditions are to be monitored. The circumstances in which an update notification is sent for a
row within the table are determined by <monitor—select>:

« If initial is omitted or true, every row in the original table that matches one of the conditions is sent as
part of the response to the monitor_cond request.

» If insert is omitted or true, update notifications are sent for rows newly inserted into the table that match
conditions or for rows modified in the table so that their old version does not match the condition and
new version does.

* If delete is omitted or true, update notifications are sent for rows deleted from the table that match condi-
tions or for rows modified in the table so that their old version does match the conditions and new ver-
sion does not.

 If modify is omitted or true, update notifications are sent whenever a row in the table that matches condi-
tions in both old and new version is modified.

Both monitor and monitor_cond sessions can exist concurrently. However, monitor and monitor_cond
shares the same <json—value> parameter space; it must be unique among all monitor and monitor_cond
sessions.

4.1.13 Monitor_cond_change

The monitor_cond_change request enables a client to change an existing monitor_cond replication of the
database by specifying a new condition and columns for each replicated table. Currently changing the
columns set is not supported.

The request object has the following members:

"method": "monitor_cond_change"
"params": [<json-value>, <json-value>, <monitor-cond-update-requests>]
"id": <nonnull-json-value>

The <json—value> parameter should have a value of an existing conditional monitoring session from this
client. The second <json—value> in params array is the requested value for this session. This value is valid
only after monitor_cond_change is committed. A user can use these values to distinguish between update
messages before conditions update and after. The <monitor—cond—update—requests> object maps the name
of the table to an array of <monitor—cond—update—request>. Monitored tables not included in <moni-
tor—cond—update—requests> retain their current conditions.

Each <monitor—cond—update—request> is an object with the following members:

"columns": [<column>*] optional
"where": [<condition>*] optional

The columns specify a new array of columns to be monitored, although this feature is not yet supported.
The where specify a new array of conditions to be applied to this monitoring session.
The response object has the following members:
"result": {}
"error": null
"id": same "id" as request
Subsequent <table—updates2> notifications are described in detail in Section 4.1.14 in the RFC. If insert

contents are requested by original monitor_cond request, <table—updates2> will contain rows that match
the new condition and do not match the old condition. If deleted contents are requested by origin monitor

Feb 17, 2025 4



OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

3.5

request, <table—updates2> will contain any matched rows by old condition and not matched by the new
condition.

Changes according to the new conditions are automatically sent to the client using the update2 or update3
monitor notification depending on the monitor method. An update, if any, as a result of a condition change,
will be sent to the client before the reply to the monitor_cond_change request.

4.1.14 Update2 notification

The update2 notification is sent by the server to the client to report changes in tables that are being moni-
tored following a monitor_cond request as described above. The notification has the following members:

"method": "update2"
"params": [<json-value>, <table-updates2>]
"id": null

The <json—value> in params is the same as the value passed as the <json—value> in params for the corre-
sponding monitor request. <table—updates2> is an object that maps from a table name to a <table—up-
date2>. A <table—update2> is an object that maps from row’s UUID to a <row—update2> object. A
<row-—update2> is an object with one of the following members:
"initial'': <row>

present for initial updates

"insert'': <row>
present for insert updates

""delete'': <row>
present for delete updates

"modify'': <row>"
present for modify updates

The format of <row> is described in Section 5.1.

<row> is always a null object for a delete update. In initial and insert updates, <row> omits columns
whose values equal the default value of the column type.

For a modify update, <row> contains only the columns that are modified. <row> stores the difference be-
tween the old and new value for those columns, as described below.

For columns with single value, the difference is the value of the new column.

The difference between two sets are all elements that only belong to one of the sets.

The difference between two maps are all key—value pairs whose keys appears in only one of the maps, plus
the key—value pairs whose keys appear in both maps but with different values. For the latter elements,

<row> includes the value from the new column.

Initial views of rows are not presented in update2 notifications, but in the response object to the moni-
tor_cond request. The formatting of the <table—updates2> object, however, is the same in either case.

4.1.15 Monitor_cond_since

A new monitor method added in Open vSwitch version 2.12. The monitor_cond_since request enables a
client to request changes that happened after a specific transaction id. A client can use this feature to re-
quest only latest changes after a server connection reset instead of re—transfer all data from the server again.

The monitor_cond method described in Section 4.1.12 also applies to monitor_cond_since, with the fol-
lowing exceptions:

Feb 17, 2025 5



OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

* RPC request method becomes monitor_cond_since.
* Reply result includes extra parameters.

» Subsequent changes are sent to the client using the update3 monitor notification, described in Section
4.1.16

The request object has the following members:

"method": "monitor_cond_since"
"params": [<db-name>, <json-value>, <monitor-cond-requests>, <last-txn-id>]
"id": <nonnull-json-value>

The <last—txn—id> parameter is the transaction id that identifies the latest data the client already has, and it
requests server to send changes AFTER this transaction (exclusive).

All other parameters are the same as monitor_cond method.
The response object has the following members:

"result": [<found>, <last-txn-id>, <table-updates2>]
"error": null
"id": same "id" as request

The <found> is a boolean value that tells if the <last—txn—id> requested by client is found in server’s his-
tory or not. If true, the changes after that version up to current is sent. Otherwise, all data is sent.

The <last—txn—id> is the transaction id that identifies the latest transaction included in the changes in <ta-
ble—updates2> of this response, so that client can keep tracking. If there is no change involved in this re-
sponse, it is the same as the <last—txn—id> in the request if <found> is true, or zero uuid if <found> is false.
If the server does not support transaction uuid, it will be zero uuid as well.

All other parameters are the same as in response object of monitor_cond method.

Like in monitor_cond, subsequent changes that match conditions in <monitor—cond—request> are automat-
ically sent to the client, but using update3 monitor notification (see Section 4.1.16), instead of update2.

4.1.16 Update3 notification
The update3 notification is sent by the server to the client to report changes in tables that are being moni-
tored following a monitor_cond_since request as described above. The notification has the following

members:
"method": "update3"
"params": [<json-value>, <last-txn-id>, <table-updates2>]
"id": null

The <last—txn—id> is the same as described in the response object of monitor_cond_since.

All other parameters are the same as in update2 monitor notification (see Section 4.1.14).

4.1.17 Get Server ID
A new RPC method added in Open vSwitch version 2.7. The request contains the following members:

"method": "get_server_id"

"params": null
"id": <nonnull-json-value>

35 Feb 17, 2025 6



OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

The response object contains the following members:

"result": "<server_id>"
"error": null
"id": same "id" as request

<server_id> is JSON string that contains a UUID that uniquely identifies the running OVSDB server
process. A fresh UUID is generated when the process restarts.

4.1.18 Database Change Awareness
RFC 7047 does not provide a way for a client to find out about some kinds of configuration changes, such
as about databases added or removed while a client is connected to the server, or databases changing be-
tween read/write and read—only due to a transition between active and backup roles. Traditionally,
ovsdb-server disconnects all of its clients when this happens, because this prompts a well-written client to
reassess what is available from the server when it reconnects.

OVS 2.9 provides a way for clients to keep track of these kinds of changes, by monitoring the Database ta-
ble in the _Server database introduced in this release (see ovsdb—server(5) for details). By itself, this does
not suppress ovsdb—server disconnection behavior, because a client might monitor this database without
understanding its special semantics. Instead, ovsdb—server provides a special request:

"method": "set_db_change_aware"
"params": [<boolean>]
"id": <nonnull-json-value>

If the boolean in the request is true, it suppresses the connection—closing behavior for the current connec-
tion, and false restores the default behavior. The reply is always the same:

"result": {}
"error": null
"id": same "id" as request

4.1.19 Schema Conversion
Open vSwitch 2.9 adds a new JSON—RPC request to convert an online database from one schema to an-
other. The request contains the following members:

"method": "convert"
"params": [<db—name>, <database-schema>]
"id": <nonnull-json-value>

Upon receipt, the server converts database <db—name> to schema <database—schema>. The schema’s
name must be <db—name>. The conversion is atomic, consistent, isolated, and durable. The data in the
database must be valid when interpreted under <database—schema>, with only one exception: data for ta-
bles and columns that do not exist in the new schema are ignored. Columns that exist in <data-
base—schema> but not in the database are set to their default values. All of the new schema’s constraints
apply in full.

If the conversion is successful, the server notifies clients that use the set_db_change_aware RPC intro-
duced in Open vSwitch 2.9 and cancels their outstanding transactions and monitors. The server disconnects
other clients, enabling them to notice the change when they reconnect. The server sends the following re-

ply:
"result": {}

"error": null
"id": same "id" as request

3.5 Feb 17, 2025 7



OVSDB-SERVER(T) Open vSwitch OVSDB-SERVER(7)

If the conversion fails, then the server sends an error reply in the following form:

"result": null
"error": [<error>]
"id": same "id" as request

5.1 Notation

For <condition>, RFC 7047 only allows the use of !=, ==, includes, and excludes operators with set types.
Open vSwitch 2.4 and later extend <condition> to allow the use of <, <=, >=, and > operators with a col-
umn with type “set of 0 or 1 integer” and an integer argument, and with “set of O or 1 real” and a real argu-
ment. These conditions evaluate to false when the column is empty, and otherwise as described in RFC
7047 for integer and real types.

<condition> is specified in Section 5.1 in the RFC with the following change: A condition can be either a
3—element JSON array as described in the RFC or a boolean value. In case of an empty array an implicit
true boolean value will be considered.

5.2.1 Insert

As an extension, Open vSwitch 2.13 and later allow an optional uuid member to specify the UUID for the
new row. The specified UUID must be unique within the table when it is inserted and not the UUID of a
row previously deleted within the transaction. If the UUID violates these rules, then the operation fails
with a duplicate uuid error.

5.2.6 Wait, 5.2.7 Commit, 5.2.9 Comment

RFC 7047 says that the wait, commit, and comment operations have no corresponding result object. This
is not true. Instead, when such an operation is successful, it yields a result object with no members.

AUTHOR

The Open vSwitch Development Community

COPYRIGHT

3.5

2016-2024, The Open vSwitch Development Community

Feb 17, 2025 8



