Using OVN Interconnect for
scaling (OVN) Kubernetes
deployments




ovn-kubernetesin brief

K8S CNI plugin
Uses OVN and OVS

OVN Community project - https:/github.com/ovn-org/ovn-kubernetes



https://github.com/ovn-org/ovn-kubernetes

Present OVN-Kubernetes Architecture (raft)
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What's the problem now?

e OVN southbound database
o becomes a bottleneck as the number of nodes increase.
o Raftissues - split brain, frequent leadership transfers.

e ovsdb-server is single threaded.

e ovn-northd does not process changes incrementally and its complexity is
O(NxM) with N nodes and M services (likely with a constant > 1)



What is OVNIC?

OVN Interconnection is a feature of OVN

Allows independent OVN deployments to be interconnected by OVN managed
geneve tunnels.
Requires

o Globalinterconnect databases accessible from each deployment

o “ovn-ic” service running on each deployment.
ovn-ic connects to global ic databases and also to its OVN Northbound and
Southbound databases.
It creates transit switch in OVN Northbound database for interconnection.

Please refer to this presentation from Han for more information


https://docs.ovn.org/en/latest/tutorials/ovn-interconnection.html
https://www.youtube.com/watch?v=YoAHurcAToE

Motivation to use OVN IC

e Address scale requirements.

e Avoid worker nodes communicating to the NB/SB databases running in

central/master nodes



Proposed OVN-Kubernetes Architecture (IC)
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Can OVN Interconnect (IC) solve the scale issues ?

1.  OVN component communication is now isolated per node - no network traffic
for clients (ovn-controllers) to talk to database servers (SBDB)

2. Only asingle client per database - eliminated current bottleneck of SBDB
cannot scale with as n clients increase

3. Smaller per node database size - northd CPU pressure is reduced and database
sizes are smaller since a node only needs a subset of the data

4. No more Raft with every node having its own database - eliminates a source of
complexity and severe bugs



OVN IC Technical Overview
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Proposed Interconnect supportin OVN-K8S

e No native interconnect OVN databases or “ovn-ic” service required

e Interconnect functionality is added in ovn-kubernetes using zones



n

What is a zone?

A zone is an independent OVN deployment
A K8s deployment can have one or more zones.
A zone can have one or more kubernetes nodes.
Each kubernetes node is assigned to a zone.

Each zone will run its own ovnkube-master(s) (multiple ovnkube-masters for
HA)
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Example deployment - 3 master and 5 worker nodes

Zone - foo

Zone - bar

Zone - baz

Ovnkube-node)

ovnkube-cluster-manage

ovnkube-node

M2
~N
ovnkube-node
M3
_ _/
~
ovnkube-node
Wi
\ J

ovnkube-node

w3

Zone - other

M - Master nodes
W - worker nodes




OVN-K8S network topology (centralized)
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OVN-K8S network topology (IC)
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Adding a POD (centralized)
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1. ovhkube-master creates
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Adding a POD (IC)
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Adding a service (centralized)
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1. ovnkube-master creates a
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Adding a service (IC)
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Adding a network policy (centralized)
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Adding a network policy (IC)
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OVN-K8S traffic patterns (IC)
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OVN-K8S multicast (IC)
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Interconnect functionality in ovnkube-master

ovnkube-master should create remote chassis in its zone Southbound database

for nodes belonging to other zones.

ovnkube-master should (in its zone Northbound database)

create transit switch
transit switch ports for zone nodes and remote nodes
connect ovn_cluster_router to transit_switch

Add routes in the ovn_cluster_router for interconnection
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Subnet management (ovnkube-cluster-manager)

e Centralized service running on the cluster master nodes

e Takes care of subnet allocation, unique id for each node, transit switch subnet
allocation, egress ip node allocation etc.
e Doesn't connect to OVN databases.

Node 1(AZ 1) Node 2 (AZ 2)

transit-switch

ovn_cluster_router-1 e — g
100.65.01/16 100.66.01/14
NS L— e W
v\ | 169.254.01)16 169.254.02/16 | ¥ ™\
10.24411/24 10.244.2./24

ovn-worker-1 ovn-worker-2




Preliminary Scale Testing
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Test setup details

48 physical machines
o 64 core Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
o 187Gi RAM
Kind kubernetes deployment with ovn-k8s CNI using ovn-kind-heater [1]

3 kind nodes (with master role) deployed on 1 physical machine.

188 kind worker nodes deployed across 47 physical machines.

[1] - https:/github.com/numansiddique/ovn-kind-heater

https:/github.com/numansiddigue/kind/tree/join_support v3



https://github.com/numansiddique/ovn-kind-heater
https://github.com/numansiddique/kind/tree/join_support_v3
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Test scenario details

Kubelet-density light test using kube-burner
o Creates 250 pods per node. Total pods - 250 * 188 = 47000

o Measures P99, P95, MAX and AVG time taken for the pods to be in Ready
state.

Memory and CPU utilization metrics using kube-prometheus.



ovn-k8s upstream vs ovn-k8s interconnect

ovn-k8s master deployment resources ovn-k8s interconnect deployment resources
e ovnkube-master deployment e ovnkube-local daemonset
o Deployed on 3 master nodes o Deployedonallnodes (3 +188)
o Containers o Containers
m ovnkube-master m ovnkube-local-master

ovn-northd

NB ovsdb-server
SB ovsdb-server
ovnkube-node
ovn-controller

m ovn-northd

e ovnkube-db deployment
o Deployed on 3 master nodes
o RAFT NB and SB cluster
o Containers
m NBovsdb-server
m SBovsdb-server

e ovnkube-node daemonset
o Deployedonallnodes (3 +188)
o Containers
m ovnkube-node
m ovn-controller
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ovn-k8s upstream vs ovn-k8s interconnect - kube-burner results

ovn-k8s upstream and ovn-k8s ic

B ovn-k8s upstream [l ovn-k8s ic

P50 P99

Containers Ready (in seconds)
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ovn-k8s upstream deployment: ovhkube master pod usage

ovnkube-master pod CPU ~ 2.2

=

ovnkube-master pod has

e ovnkube-master container
e ovn-northd container
e Runsonly on master nodes (3

nodes)
ovn-northd ovnkube-master
CPU 16 0.6
Mem 824 MiB 1024 MiB

(RSS)
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ovn-k8s upstream deployment: ovhkube db pod usage

ovnkube-db pod has

e Northbound ovsdb-server
e Southbound ovsdb-server

NB server SB server
CPU 0.12 0.2
Mem 230 MiB 844 MiB

(RSS)
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ovn-k8s upstream deployment: ovhkube node pod usage

ovnkube-node pod has

e ovnkube-node
e ovn-controller

ovnkube-node

CPU 0.025
Mem ;
(ReSS) 40 MiB

ovn-controller

0.17

560 MiB
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ovn-k8s ic deployment: ovnkube local pod usage

ovnkube-local pod has containers

ovnkube-local-master
ovn-northd container
NB ovsdb-server

SB ovsdb-server
ovnkube-node
ovn-controller

Pod CPU usage ~ 2 cores
Pod Mem (RSS) usage ~ 800 MiB
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ovn-k8s ic deployment: ovnkube local pod usage (in detail)

prometheus -

v CPU Usage

CPU Usage

SB ovsdb-server CPU ~ 0.5

« CPU Throttling
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ovn-k8s ic deployment: ovnkube local pod usage (in detail)

CPU Throttling

ovn-northd CPU ~ 0.8

¢  prometheus ~

« CPU Usage

« CPU Throttling

ovn-controller CPU ~ 0.25
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ovn-k8s ic deployment: ovnkube local pod usage (in detail)

ovnkube-local-master
e CPU~O06
e Mem (RSS)~ 600 MiB
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ovn-k8s ic deployment: ovnkube local pod usage (in detail)

ovnkube-node
e CPU~0.025
e Mem (RSS) ~ 44 MiB



Service comparison

ovn-k8s upstream and ovn-k8s ic

R ovn-k8s upstream and ovn-k8s ic

B ovn-k8s upstream [l ovn-k8s ic
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(Recap)
ovn-k8s master deployment

° ovnkube-master, ovn-northd and DB servers runs only on master (3) nodes.
° ovnkube-node and ovn-controller runs on all nodes

ovn-k8s IC deployment
° All the services run on all nodes.
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Service comparison

ovn-k8s upstream and ovn-k8s ic
B ovn-k8s upstream [ ovn-k8s ic

150
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North South

DB Size (MiB)

(Recap)
ovn-k8s master deployment

° ovnkube-master, ovn-northd and DB servers runs only on master (3) nodes.
° ovnkube-node and ovn-controller runs on all nodes

ovn-k8s IC deployment
° All the services run on all nodes.
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Worker node resource utilization

ovn-k8s upstream ovn-k8s ic
CPU ~0.275 ~2
Mem (RSS) | ~600 MiB ~800 MiB




Conclusions
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IC Cons

Data duplication - some cluster wide OVN configuration will have to be
duplicated in every per node database. Overall more data stored across the
Cluster

Slight increase of the worker node CPU and memory usage

Will require refactoring OVN-k8s debugging tools - ovnkube-trace will need to
now work across multiple databases

It ties ovn-kubernetes to the switch per node topology
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IC Pros

Decentralized architecture, simplifying the deployment (no DBs in RAFT)

Improved e2e latency when bringing up PODs (~30% average and P99 latency
reduction)

Improved resource usage on the central nodes (RSS/CPU needed for
ovn-northd/NB/SB)

No effort needed when developing new OVN-k8s features, allowing “hybrid”
deployments:

o group multiple nodes in the same availability zone to share the worker
resource increase hit



Questions?




