
1

Using OVN Interconnect for
scaling (OVN) Kubernetes

deployments

Numan Siddique

Dumitru Ceara

2

● K8S CNI plugin

● Uses OVN and OVS

● OVN Community project - https://github.com/ovn-org/ovn-kubernetes

ovn-kubernetes in brief

https://github.com/ovn-org/ovn-kubernetes

ovnkube-nod
e

ovnkube-nod
e

3

OVN northbound
DB

OVN southbound
DB

Master
Node 1

ovn-kubernetes
master

ovn-northd

OVN northbound
DB

OVN southbound
DB

Master
Node 2

ovn-kubernetes
master

ovn-northd

OVN northbound
DB

OVN southbound
DB

Master
Node 3

ovn-kubernetes
master

ovn-northd

ovnkube-nod
e

ovn-controller

ovn-kubernetes
node

RAFT cluster

Present OVN-Kubernetes Architecture (raft)

4

● OVN southbound database
○ becomes a bottleneck as the number of nodes increase.
○ Raft issues - split brain, frequent leadership transfers.

● ovsdb-server is single threaded.

● ovn-northd does not process changes incrementally and its complexity is
O(NxM) with N nodes and M services (likely with a constant > 1)

What’s the problem now?

5

● OVN Interconnection is a feature of OVN

● Allows independent OVN deployments to be interconnected by OVN managed

geneve tunnels.

● Requires

○ Global interconnect databases accessible from each deployment

○ “ovn-ic” service running on each deployment.

● ovn-ic connects to global ic databases and also to its OVN Northbound and

Southbound databases.

● It creates transit switch in OVN Northbound database for interconnection.

● Please refer to this presentation from Han for more information

What is OVN IC?

https://docs.ovn.org/en/latest/tutorials/ovn-interconnection.html
https://www.youtube.com/watch?v=YoAHurcAToE

6

● Address scale requirements.

● Avoid worker nodes communicating to the NB/SB databases running in

central/master nodes

Motivation to use OVN IC

7

OVN northbound
DB

OVN southbound
DB

Node 1

ovn-kubernetes
master

ovn-northd

ovnkube-nod
e

ovn-controller

ovn-kubernetes
node

ovnkube-
master

OVN northbound
DB

OVN southbound
DB

Node 2

ovn-kubernetes
master

ovn-northd

ovnkube-nod
e

ovn-controller

ovn-kubernetes
node

ovnkube-
master

OVN northbound
DB

OVN southbound
DB

Node 3

ovn-kubernetes
master

ovn-northd

ovnkube-nod
e

ovn-controller

ovn-kubernetes
node

ovnkube-
master

Proposed OVN-Kubernetes Architecture (IC)

8

1. OVN component communication is now isolated per node - no network traffic
for clients (ovn-controllers) to talk to database servers (SBDB)

2. Only a single client per database - eliminated current bottleneck of SBDB
cannot scale with as n clients increase

3. Smaller per node database size - northd CPU pressure is reduced and database
sizes are smaller since a node only needs a subset of the data

4. No more Raft with every node having its own database - eliminates a source of
complexity and severe bugs

Can OVN Interconnect (IC) solve the scale issues ?

OVN IC Technical Overview

9

10

● No native interconnect OVN databases or “ovn-ic” service required

● Interconnect functionality is added in ovn-kubernetes using zones

Proposed Interconnect support in OVN-K8S

11

● A zone is an independent OVN deployment

● A K8s deployment can have one or more zones.

● A zone can have one or more kubernetes nodes.

● Each kubernetes node is assigned to a zone.

● Each zone will run its own ovnkube-master(s) (multiple ovnkube-masters for

HA)

What is a zone?

12

Zone - foo Zone - bar Zone - baz

ovnkube-master

Ovnkube-node

ovnkube-cluster-manager

M1

ovnkube-node

M2

ovnkube-node

M3

ovnkube-master

ovnkube-node

W2

ovnkube-master

ovnkube-node

W4

ovnkube-node

W3

ovnkube-node

W1

M - Master nodes
W - worker nodes

Zone - other

ovnkube-master

ovnkube-node

W5

Example deployment - 3 master and 5 worker nodes

13

● ovn_cluster_router

distributed

● join_switch distributed

OVN-K8S network topology (centralized)

ovn_cluster_router

join_switch

POD2POD1

Node 1

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

Node 2

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-1

OVS DB Node 1

Northbound DB

Southbound DB

ovn-northd

OVS DB Node 2

14

● ovn_cluster_routers not

distributed anymore

● join_switch not distributed

anymore

● transit-switch distributed

transit-switch

POD2POD1

Node 2 (AZ 2)

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-2

join_switch-2

ovn_cluster_router-2

Northbound DB 2

Southbound DB 2

ovn-northd-2

Northbound DB 1

Southbound DB 1

ovn-northd-1

POD2POD1

Node 1 (AZ 1)

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

join_switch-1

ovn_cluster_router-1

OVN-K8S network topology (IC)

OVS DB Node 2OVS DB Node 1

1. ovnkube-master creates

POD4 logical switch port in NB

15

1

2

3

4

2. ovnkube-node (node2)

creates POD4 veth in OVS

3. ovn-northd creates SB port

binding

4. ovn-controller (node2) claims

the port and installs all required

openflows

Adding a POD (centralized)

ovn_cluster_router

join_switch

POD2POD1

Node 1

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

Node 2

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-1Northbound DB

Southbound DB

ovn-northd

OVS DB Node 2OVS DB Node 1

16

1

2

3

4

1. ovnkube-master-2 creates

POD4 logical switch port in

NB-2

2. ovnkube-node (node2)

creates POD4 veth in OVS

3. ovn-northd-2 creates SB-2

port binding

4. ovn-controller (node2)

claims the port and installs all

required openflows

Adding a POD (IC)

transit-switch

POD2POD1

Node 2 (AZ 2)

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-2

join_switch-2

ovn_cluster_router-2

Northbound DB 2

Southbound DB 2

ovn-northd-2

Northbound DB 1

Southbound DB 1

ovn-northd-1

POD2POD1

Node 1 (AZ 1)

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

join_switch-1

ovn_cluster_router-1

OVS DB Node 2OVS DB Node 1

ovn_cluster_router

join_switch

POD2POD1

Node 1

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

Node 2

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-1Northbound DB

Southbound DB

ovn-northd

1. ovnkube-master creates a

load balancer for the service

with backends POD2 and

POD4. This is applied to the

node switches and node GRs

17

1

2
2. ovn-northd creates SB load

balancer and relevant logical

flows

3. ovn-controllers process SB

updates and installs all

required openflows

1 1

1 1

33

Adding a service (centralized)

OVS DB Node 2OVS DB Node 1

transit-switch

POD2POD1

Node 2 (AZ 2)

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-2

join_switch-2

ovn_cluster_router-2

Northbound DB 2

Southbound DB 2

ovn-northd-2

Northbound DB 1

Southbound DB 1

ovn-northd-1

POD2POD1

Node 1 (AZ 1)

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

join_switch-1

ovn_cluster_router-1

18 3

1. ovnkube-masters create a

load balancer for the service

with backends POD2 and

POD4. This is applied to the

node switches and node GRs

2. ovn-northds create SB load

balancer and relevant logical

flows

3. ovn-controllers process SB

updates and installs all

required openflows

11

1 1

1

22

1

3

Adding a service (IC)

OVS DB Node 2OVS DB Node 1

ovn_cluster_router

join_switch

POD2POD1

Node 1

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

Node 2

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-1Northbound DB

Southbound DB

ovn-northd

1. ovnkube-master creates an

ACL for the network policy.

The ACL refers to the port

group containing all selected

pods, PG1=(POD2, POD4)

and to the address set

containing the pods’ IPs AS1 =

(POD2-IP, POD4-IP). The

ACL is (implicitly) applied to

the node switches.

19

1

2

2. ovn-northd creates SB

relevant logical flows

3. ovn-controllers process SB

updates and installs all

required openflows

1 1

33

PG1=(POD2, POD4)

AS1=(POD2-IP,
POD4-IP)

Adding a network policy (centralized)

OVS DB Node 2OVS DB Node 1

transit-switch

POD2POD1

Node 2 (AZ 2)

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-2

OVS DB Node 2

join_switch-2

ovn_cluster_router-2

Northbound DB 2

Southbound DB 2

ovn-northd-2

Northbound DB 1

Southbound DB 1

ovn-northd-1

POD2POD1

Node 1 (AZ 1)

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

join_switch-1

ovn_cluster_router-1

20 3

1. ovnkube-masters create an

ACL for the network policy.

The ACL refers to the port

group containing all locally

selected pods, PG1=(POD2),

PG2=(POD4) and to the

address set containing the

pods’ IPs AS1 = (POD2-IP,

POD4-IP). The ACL is

(implicitly) applied to the node

switches.

2. ovn-northds create SB

relevant logical flows

3. ovn-controllers process SB

updates and installs all

required openflows

11

1

22

1

3

PG1=(POD2)

AS1=(POD2-IP,
POD4-IP)

PG1=(POD4)

AS1=(POD2-IP,
POD4-IP)

Adding a network policy (IC)

OVS DB Node 1

21

transit-switch

POD2POD1

Node 2 (AZ 2)

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-2

OVS DB Node 2

join_switch-2

ovn_cluster_router-2

Northbound DB 2

Southbound DB 2

ovn-northd-2

Northbound DB 1

Southbound DB 1

ovn-northd-1

POD2POD1

Node 1 (AZ 1)

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

OVS DB Node 1

join_switch-1

ovn_cluster_router-1

E-W Pods on node1 (AZ1):

10.244.1.0/24 via 169.254.0.1

N-S return traffic via LB on

GR-worker1:

100.65.0.0/24 via 169.254.0.1

N-S return traffic via LB on

GR-worker1:

(to bypass /24 src-policy

route): 100.65.0.2/32 via

169.254.0.1

Default route:

0.0.0.0/0 via 100.66.0.2

169.254.0.1/16 169.254.0.2/16

100.65.0.1/16 100.66.0.1/16

100.66.0.2/16100.65.0.2/16

10.244.1.1/24 10.244.2.1/24

OVN-K8S traffic patterns (IC)

22

transit-switch

POD2POD1

Node 2 (AZ 2)

ovn-worker-2

POD3 POD4

GR-worker-2

ext-worker-2

OVS DB Node 2

join_switch-2

ovn_cluster_router-2

Northbound DB 2

Southbound DB 2

ovn-northd-2

Northbound DB 1

Southbound DB 1

ovn-northd-1

POD2POD1

Node 1 (AZ 1)

ovn-worker-1

POD1 POD2

GR-worker-1

ext-worker-1

OVS DB Node 1

join_switch-1

ovn_cluster_router-1

1. IGMP snooping enabled on

node switches

2. IGMP relay enabled on each

AZ’s ovn_cluster_router

3. IGMP snooping enabled on the

transit switch

4. IGMP reports forwarded by the

cluster routers

1 1

2 2

3

5. IP multicast efficiently

forwarded

OVN-K8S multicast (IC)

23

● ovnkube-master should create remote chassis in its zone Southbound database

for nodes belonging to other zones.

● ovnkube-master should (in its zone Northbound database)

● create transit switch

● transit switch ports for zone nodes and remote nodes

● connect ovn_cluster_router to transit_switch

● Add routes in the ovn_cluster_router for interconnection

Interconnect functionality in ovnkube-master

24

Node 2 (AZ 2)

ovn-worker-2

join_switch-2

ovn_cluster_router-2

● Centralized service running on the cluster master nodes

● Takes care of subnet allocation, unique id for each node, transit switch subnet
allocation, egress ip node allocation etc.

● Doesn’t connect to OVN databases.

transit-switch

Node 1 (AZ 1)

ovn-worker-1

ovn_cluster_router-1

join_switch-1

169.254.0.1/16 169.254.0.2/16

100.65.0.1/16 100.66.0.1/16

10.244.1.1/24 10.244.2.1/24

Subnet management (ovnkube-cluster-manager)

Preliminary Scale Testing

25

26

● 48 physical machines
○ 64 core Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
○ 187Gi RAM

● Kind kubernetes deployment with ovn-k8s CNI using ovn-kind-heater [1]

● 3 kind nodes (with master role) deployed on 1 physical machine.

● 188 kind worker nodes deployed across 47 physical machines.

[1] - https://github.com/numansiddique/ovn-kind-heater
 https://github.com/numansiddique/kind/tree/join_support_v3

Test setup details

https://github.com/numansiddique/ovn-kind-heater
https://github.com/numansiddique/kind/tree/join_support_v3

27

● Kubelet-density light test using kube-burner
○ Creates 250 pods per node. Total pods - 250 * 188 = 47000
○ Measures P99, P95, MAX and AVG time taken for the pods to be in Ready

state.

● Memory and CPU utilization metrics using kube-prometheus.

Test scenario details

28

ovn-k8s master deployment resources
● ovnkube-master deployment

○ Deployed on 3 master nodes
○ Containers

■ ovnkube-master
■ ovn-northd

● ovnkube-db deployment
○ Deployed on 3 master nodes
○ RAFT NB and SB cluster
○ Containers

■ NB ovsdb-server
■ SB ovsdb-server

● ovnkube-node daemonset
○ Deployed on all nodes (3 + 188)
○ Containers

■ ovnkube-node
■ ovn-controller

ovn-k8s interconnect deployment resources
● ovnkube-local daemonset

○ Deployed on all nodes (3 + 188)
○ Containers

■ ovnkube-local-master
■ ovn-northd
■ NB ovsdb-server
■ SB ovsdb-server
■ ovnkube-node
■ ovn-controller

ovn-k8s upstream vs ovn-k8s interconnect

29

ovn-k8s upstream vs ovn-k8s interconnect - kube-burner results

30

ovnkube-master pod has

● ovnkube-master container
● ovn-northd container
● Runs only on master nodes (3

nodes)

ovn-northd ovnkube-master

CPU 1.6 0.6

Mem
(RSS)

824 MiB 1024 MiB

 ovnkube-master pod CPU ~ 2.2

ovn-k8s upstream deployment: ovnkube master pod usage

31

ovnkube-db pod has

● Northbound ovsdb-server
● Southbound ovsdb-server

NB server SB server

CPU 0.12 0.2

Mem
(RSS)

230 MiB 844 MiB

ovn-k8s upstream deployment: ovnkube db pod usage

32

ovnkube-node pod has

● ovnkube-node
● ovn-controller

ovnkube-node ovn-controller

CPU 0.025 0.17

Mem
(RSS)

40 MiB 560 MiB

ovn-k8s upstream deployment: ovnkube node pod usage

33

ovnkube-local pod has containers

● ovnkube-local-master
● ovn-northd container
● NB ovsdb-server
● SB ovsdb-server
● ovnkube-node
● ovn-controller

Pod CPU usage ~ 2 cores
Pod Mem (RSS) usage ~ 800 MiB

ovn-k8s ic deployment: ovnkube local pod usage

34

NB ovsdb-server CPU ~ 0.06

SB ovsdb-server CPU ~ 0.5

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

35

ovn-northd CPU ~ 0.8

ovn-controller CPU ~ 0.25

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

36

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

 ovnkube-local-master
● CPU ~ 0.6
● Mem (RSS) ~ 600 MiB

37

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

 ovnkube-node
● CPU ~ 0.025
● Mem (RSS) ~ 44 MiB

38

(Recap)
ovn-k8s master deployment

● ovnkube-master, ovn-northd and DB servers runs only on master (3) nodes.
● ovnkube-node and ovn-controller runs on all nodes

ovn-k8s IC deployment
● All the services run on all nodes.

Service comparison

39

(Recap)
ovn-k8s master deployment

● ovnkube-master, ovn-northd and DB servers runs only on master (3) nodes.
● ovnkube-node and ovn-controller runs on all nodes

ovn-k8s IC deployment
● All the services run on all nodes.

Service comparison

40

Worker node resource utilization

ovn-k8s upstream ovn-k8s ic

CPU ~0.275 ~2

Mem (RSS) ~600 MiB ~800 MiB

Conclusions

41

42

● Data duplication - some cluster wide OVN configuration will have to be
duplicated in every per node database. Overall more data stored across the
cluster

● Slight increase of the worker node CPU and memory usage

● Will require refactoring OVN-k8s debugging tools - ovnkube-trace will need to
now work across multiple databases

● It ties ovn-kubernetes to the switch per node topology

IC Cons

43

● Decentralized architecture, simplifying the deployment (no DBs in RAFT)

● Improved e2e latency when bringing up PODs (~30% average and P99 latency
reduction)

● Improved resource usage on the central nodes (RSS/CPU needed for
ovn-northd/NB/SB)

● No effort needed when developing new OVN-k8s features, allowing “hybrid”
deployments:

○ group multiple nodes in the same availability zone to share the worker
resource increase hit

IC Pros

Questions?

44

