Using OVN Interconnect for
scaling (OVN) Kubernetes
deployments

ovn-kubernetesin brief

K8S CNI plugin
Uses OVN and OVS

OVN Community project - https:/github.com/ovn-org/ovn-kubernetes

https://github.com/ovn-org/ovn-kubernetes

Present OVN-Kubernetes Architecture (raft)

ovn-kubernetes
master

ovn-kubernetes
master

ovn-kubernetes
master
OVN northbound
DB
ovn-northd

OVN southbound
DB

OVN northbound
DB

OVN northbound
DB

ovn-northd

ovn-northd

OVN southbound
DB

OVN southbound
DB

Master I'\\lllazte;
Node 1 ode Node 3
ovn-kubernetes
—

node
RAFT cluster

What's the problem now?

e OVN southbound database
o becomes a bottleneck as the number of nodes increase.
o Raftissues - split brain, frequent leadership transfers.

e ovsdb-server is single threaded.

e ovn-northd does not process changes incrementally and its complexity is
O(NxM) with N nodes and M services (likely with a constant > 1)

What is OVNIC?

OVN Interconnection is a feature of OVN

Allows independent OVN deployments to be interconnected by OVN managed
geneve tunnels.
Requires

o Globalinterconnect databases accessible from each deployment

o “ovn-ic” service running on each deployment.
ovn-ic connects to global ic databases and also to its OVN Northbound and
Southbound databases.
It creates transit switch in OVN Northbound database for interconnection.

Please refer to this presentation from Han for more information

https://docs.ovn.org/en/latest/tutorials/ovn-interconnection.html
https://www.youtube.com/watch?v=YoAHurcAToE

Motivation to use OVN IC

e Address scale requirements.

e Avoid worker nodes communicating to the NB/SB databases running in

central/master nodes

Proposed OVN-Kubernetes Architecture (IC)

P

ovn-kubernetes
master

A A

OVN northbound
DB

Y

ovn-northd

Y

OVN southbound
DB

ovnkube-
master

N

ovn-controller

ovn-kubernetes
node

ovnKube-n

od

\\e

Node 1

ovn-kubernetes
master

A A

OVN northbound
DB

Y

ovn-northd

Y

OVN southbound
DB

ovnkube-
master

ovn-controller

ovn-kubernetes
node

ovnKube-n

od

\\e

Node 2

ovn-kubernetes
master

A 4

OVN northbound
DB

Y

ovn-northd

Y

OVN southbound
DB

ovnkube-
master

ovn-controller

ovn-kubernetes
node

ovnKube-nod

\\e

Node 3

Can OVN Interconnect (IC) solve the scale issues ?

1. OVN component communication is now isolated per node - no network traffic
for clients (ovn-controllers) to talk to database servers (SBDB)

2. Only asingle client per database - eliminated current bottleneck of SBDB
cannot scale with as n clients increase

3. Smaller per node database size - northd CPU pressure is reduced and database
sizes are smaller since a node only needs a subset of the data

4. No more Raft with every node having its own database - eliminates a source of
complexity and severe bugs

OVN IC Technical Overview

9

10

Proposed Interconnect supportin OVN-K8S

e No native interconnect OVN databases or “ovn-ic” service required

e Interconnect functionality is added in ovn-kubernetes using zones

n

What is a zone?

A zone is an independent OVN deployment
A K8s deployment can have one or more zones.
A zone can have one or more kubernetes nodes.
Each kubernetes node is assigned to a zone.

Each zone will run its own ovnkube-master(s) (multiple ovnkube-masters for
HA)

12

Example deployment - 3 master and 5 worker nodes

Zone - foo

Zone - bar

Zone - baz

Ovnkube-node)

ovnkube-cluster-manage

ovnkube-node

M2
~N
ovnkube-node
M3
_ _/
~
ovnkube-node
Wi
\ J

ovnkube-node

w3

Zone - other

M - Master nodes
W - worker nodes

OVN-K8S network topology (centralized)

Node 1 Node 2

Northbound DB / ext-worker-1 ext-worker-1 \
I oooos I I ooooo I
[| o o [| o B | oQoooo o

J
~

[ovn-northd]
GR-worker-1 GR-worker-2
Southbound DB \/' \/
— AN | e | — 2N
\|:|/nnunn e ovn_cluster_router
ooooo 0

distributed
ovn_cluster_router

NS

PN
ovn-worker-1 / \ ovn-worker-2

e join_switch distributed

OVS DB Node 1 OVS DB Node 2

& RedHat

OVN-K8S network topology (IC)

Node 1(AZ 1) Node 2 (AZ 2)
Northbound DB 1 / ext-worker-1 \ Northbound DB 2 / ext-worker-2 \
(— = —
[ovn-northd-1] GR-wqrker-1 [ovn-northd-2]
NS
Southbound DB 1 < Southbound DB 2

e

join_switch-1

e ovn_cluster_routers not

distributed anymore

transit-switch e join_switch not distributed

ovn_cluster_router-1 e —
S / anymore
N e transit-switch distributed

ovn-worker-1

OVS DB Node 1 OVS DB Node 2

. ‘ RedHat

Adding a POD (centralized)

1

Northbound DB

[ovn-northd]

Southbound DB

3

Node 1

-

ext-worker-1

J

GR-worker-1

NS
N

\

join_switch

ovn_clust‘er_router

/

NS
N

T

OVS DB Node 1

Node 2

ext-worker-1

}

GR-w

- N

rker-2

NS
N

/

OVS DB Node 2

1. ovhkube-master creates

POD4 logical switch portin NB

2. ovnkube-node (node?2)

creates POD4 veth in OVS
3. ovn-northd creates SB port
binding

4. ovn-controller (node?2) claims
the port and installs all required

openflows

Adding a POD (IC)

Node 1(AZ1)

Northbound DB 1 / ext-worker-1 \
=
[l Lo [o | o Y o |

GR-warker-1
[ovn-northd-1]
NS
Southbound DB 1 v \\

-

join_switch-1

ovn_cluster_router-1

N
N

P

ovn-worker-1

OVS DB Node 1

:

3

Northbound DB 2

[ovn-northd-2]

Southbound DB 2

transit-switch

Node 2 (AZ 2)

ext-worker-2 \
1. ovhkube-master-2 creates

POD4 logical switch portin
NB-2

2. ovnkube-node (node?)

creates POD4 veth in OVS

3. ovn-northd-2 creates SB-2
port binding

4. ovn-controller (node?)

claims the port and installs all

required openflows

OVS DB Node 2

- ‘ RedHat

Adding a service (centralized)

1 Node 1

Northbound DB / ext-worker-1
I coooo I
[| o o [| o B |

[ovn-northd]

J

GR-worker-1

Southbound DB -I \ /"

/ \ \ join_switch

2 \@

ovn_clust‘er_router

NS

OVS DB Node 1

; =

////// VAN \\\\\

Node 2

ext-worker-1

}

GR-worker-2

[

- N

OVS DB Node 2

3

1. ovnkube-master creates a
load balancer for the service
with backends POD2 and

PODA4. This is applied to the

node switches and node GRs

2. ovn-northd creates SB load
balancer and relevant logical

flows

3. ovn-controllers process SB
updates and installs all

required openflows

Adding a service (IC)

Node 1(AZ1)

Northbound DB 1 / ext-worker-1

GR-warker-1

[ovn-northd-1]

Southbound DB 1

5

ovn_cluster_router-1

N

-I ovn-worker-1

NS L—

OVS DB Node 1

:

Northbound DB 2
1

[ovn-northd-2]

Southbound DB 2

;

transit-switch

Node 2 (AZ 2)

ext-worker-2 \
1. ovhkube-masters create a

load balancer for the service
with backends POD2 and
PODA4. This is applied to the

node switches and node GRs

2. ovn-northds create SB load

balancer and relevant logical

flows

3. ovn-controllers process SB

updates and installs all

required openflows

OVS DB Node 2

- 3
- ‘ RedHat

Adding a network policy (centralized)

Node 1

Northbound DB / ext-worker-1
\ I ooooo I
[| o o [| o B |

[ovn-northd]

J

GR-worker-1

Southbound DB \ /"

: A

[PG1=(POD2, POD4)]

AS1=(POD2-IP,
POD4-IP)

join_switch
\I oT=T=T=1=] I/
ogoogog O

ovn_clust‘er_router

NS

//\\

OVS DB Node 1

: =

ext-worker-1

}

- N

GR-w

[

rker-2

OVS DB Node 2

3

1. ovnkube-master creates an
ACL for the network policy.
The ACL refers to the port
group containing all selected
pods, PG1=(POD2, POD4)
and to the address set
containing the pods’ IPs AS1 =
(POD2-IP, POD4-IP). The
ACL is (implicitly) applied to

the node switches.

2. ovn-northd creates SB

relevant logical flows

3. ovn-controllers process SB
updates and installs all

required openflows

‘ RedHat

Adding a network policy (IC)

5

Node 1(AZ1)

Northbound DB 1 /

[ovn-northd-1]

Southbound DB 1

[

PG1=(POD2)]

[

AS1=(POD2-IP,
PODA4-IP)

20

- S

ext-worker-1

GR-warker-1

N
N

join_switch-1

S

OVS DB Node 1

Northbound DB 2

—_

Node 2 (AZ 2)

[ovn-northd-2]

Southbound DB 2

:

transit-swjtch

PG1=(POD4)

[

AS1=(POD2-IP,
PODA4-IP)

ext-worker-2

N

OVS DB Node 2

1. ovnkube-masters create an
ACL for the network policy.
The ACL refers to the port
group containing all locally
selected pods, PG1=(POD?2),
PG2=(POD4) and to the
address set containing the
pods’ IPs AS1 = (POD2-IP,
POD4-IP). The ACL is
(implicitly) applied to the node
switches.

2. ovn-northds create SB

relevant logical flows

3. ovn-controllers process SB
updates and installs all

required openflows

‘ RedHat

OVN-K8S traffic patterns (IC)

Node 1

(AZ1)

Northbound DB 1

[ovn-northd-1]

e

Southbound DB 1

100065.0.2/16

100,65.0.1/16

10{244.1.1/24

- S

ext-worker-1

GR-wgrker-1

NS
7 N\

join_switch-1

ovn_cluster_router-1

N/

PN
169,054.0.1/16
7’
/
ovn-worker-1 /

88888 o] |/

S

21

OVS DB Node 1

-

~

N

Northbound DB 2

N [ovn-northd-2]
N\

\iouthbound DB 2
\
\
\
\
\

transit-switch \

!
\

— oy,

- _—

\
169:284.0.

Node 2 (AZ 2)

ext-worker-2

T

GR-wgrker-2

10.244.21/24
ovn-worker-2

OVS DB Node 2

-

E-W Pods on nodel (AZ1):
10.244.1.0/24 via 169.254.0.1

N-S return traffic viaLB on
GR-worker1:
100.65.0.0/24 via 169.254.0.1

N-S return traffic via LB on
GR-workert:

(to bypass /24 src-policy
route): 100.65.0.2/32 via
169.254.0.1

0.0.0.0/0via 100.66.0.2

22

OVN-K8S multicast (IC)

Northbound DB 1

[ovn-northd-1]

Southbound DB 1

-

Node 1(AZ1)

e

ext-worker-1

GR-wgrker-1

NS
7 N\

join_switch-1

~

7’

OVS DB Node 1

-

-

-

Northbound DB 2

[ovn-northd-2]

Southbound DB 2

-

3

transit-switch

f—-_-\
~

~
N

Node 2 (AZ 2)

/

ext-worker-2

GR-warker-2

N

OVS DB Node 2

1. IGMP snooping enabled on

node switches

2. IGMP relay enabled on each

AZ’'s ovn_cluster_router

3. IGMP snooping enabled on the

transit switch

4. |IGMP reports forwarded by the

cluster routers

5. IP multicast efficiently

forwarded

23

Interconnect functionality in ovnkube-master

ovnkube-master should create remote chassis in its zone Southbound database

for nodes belonging to other zones.

ovnkube-master should (in its zone Northbound database)

create transit switch
transit switch ports for zone nodes and remote nodes
connect ovn_cluster_router to transit_switch

Add routes in the ovn_cluster_router for interconnection

24

Subnet management (ovnkube-cluster-manager)

e Centralized service running on the cluster master nodes

e Takes care of subnet allocation, unique id for each node, transit switch subnet
allocation, egress ip node allocation etc.
e Doesn't connect to OVN databases.

Node 1(AZ 1) Node 2 (AZ 2)

transit-switch

ovn_cluster_router-1 e — g
100.65.01/16 100.66.01/14
NS L— e W
v\ | 169.254.01)16 169.254.02/16 | ¥ ™\
10.24411/24 10.244.2./24

ovn-worker-1 ovn-worker-2

Preliminary Scale Testing

26

Test setup details

48 physical machines
o 64 core Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
o 187Gi RAM
Kind kubernetes deployment with ovn-k8s CNI using ovn-kind-heater [1]

3 kind nodes (with master role) deployed on 1 physical machine.

188 kind worker nodes deployed across 47 physical machines.

[1] - https:/github.com/numansiddique/ovn-kind-heater

https:/github.com/numansiddigue/kind/tree/join_support v3

https://github.com/numansiddique/ovn-kind-heater
https://github.com/numansiddique/kind/tree/join_support_v3

27

Test scenario details

Kubelet-density light test using kube-burner
o Creates 250 pods per node. Total pods - 250 * 188 = 47000

o Measures P99, P95, MAX and AVG time taken for the pods to be in Ready
state.

Memory and CPU utilization metrics using kube-prometheus.

ovn-k8s upstream vs ovn-k8s interconnect

ovn-k8s master deployment resources ovn-k8s interconnect deployment resources
e ovnkube-master deployment e ovnkube-local daemonset
o Deployed on 3 master nodes o Deployedonallnodes (3 +188)
o Containers o Containers
m ovnkube-master m ovnkube-local-master

ovn-northd

NB ovsdb-server
SB ovsdb-server
ovnkube-node
ovn-controller

m ovn-northd

e ovnkube-db deployment
o Deployed on 3 master nodes
o RAFT NB and SB cluster
o Containers
m NBovsdb-server
m SBovsdb-server

e ovnkube-node daemonset
o Deployedonallnodes (3 +188)
o Containers
m ovnkube-node
m ovn-controller

29

ovn-k8s upstream vs ovn-k8s interconnect - kube-burner results

ovn-k8s upstream and ovn-k8s ic

B ovn-k8s upstream [l ovn-k8s ic

P50 P99

Containers Ready (in seconds)

30

ovn-k8s upstream deployment: ovhkube master pod usage

ovnkube-master pod CPU ~ 2.2

=

ovnkube-master pod has

e ovnkube-master container
e ovn-northd container
e Runsonly on master nodes (3

nodes)
ovn-northd ovnkube-master
CPU 16 0.6
Mem 824 MiB 1024 MiB

(RSS)

31

ovn-k8s upstream deployment: ovhkube db pod usage

ovnkube-db pod has

e Northbound ovsdb-server
e Southbound ovsdb-server

NB server SB server
CPU 0.12 0.2
Mem 230 MiB 844 MiB

(RSS)

32

ovn-k8s upstream deployment: ovhkube node pod usage

ovnkube-node pod has

e ovnkube-node
e ovn-controller

ovnkube-node

CPU 0.025
Mem ;
(ReSS) 40 MiB

ovn-controller

0.17

560 MiB

33

ovn-k8s ic deployment: ovnkube local pod usage

ovnkube-local pod has containers

ovnkube-local-master
ovn-northd container
NB ovsdb-server

SB ovsdb-server
ovnkube-node
ovn-controller

Pod CPU usage ~ 2 cores
Pod Mem (RSS) usage ~ 800 MiB

34

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

prometheus -

v CPU Usage

CPU Usage

SB ovsdb-server CPU ~ 0.5

« CPU Throttling

35

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

CPU Throttling

ovn-northd CPU ~ 0.8

¢ prometheus ~

« CPU Usage

« CPU Throttling

ovn-controller CPU ~ 0.25

36

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

ovnkube-local-master
e CPU~O06
e Mem (RSS)~ 600 MiB

37

ovn-k8s ic deployment: ovnkube local pod usage (in detail)

ovnkube-node
e CPU~0.025
e Mem (RSS) ~ 44 MiB

Service comparison

ovn-k8s upstream and ovn-k8s ic

R ovn-k8s upstream and ovn-k8s ic

B ovn-k8s upstream [l ovn-k8s ic
2.0
1250
1.5 1000
750
1.0
500
0.5 250
0
0.0 & >
- @ & A @ & & 2
3 & & & @ & = & <® s
& & ® ’0 © & F F 2 &
& P N & S & & & o ° o
& & S S S & S o S &
o‘\ (&) &) Q
Mem Usage (RSS) MiB
CPU Usage

(Recap)
ovn-k8s master deployment

° ovnkube-master, ovn-northd and DB servers runs only on master (3) nodes.
° ovnkube-node and ovn-controller runs on all nodes

ovn-k8s IC deployment
° All the services run on all nodes.

38

Service comparison

ovn-k8s upstream and ovn-k8s ic
B ovn-k8s upstream [ovn-k8s ic

150

100

50

North South

DB Size (MiB)

(Recap)
ovn-k8s master deployment

° ovnkube-master, ovn-northd and DB servers runs only on master (3) nodes.
° ovnkube-node and ovn-controller runs on all nodes

ovn-k8s IC deployment
° All the services run on all nodes.

39

40

Worker node resource utilization

ovn-k8s upstream ovn-k8s ic
CPU ~0.275 ~2
Mem (RSS) | ~600 MiB ~800 MiB

Conclusions

42

IC Cons

Data duplication - some cluster wide OVN configuration will have to be
duplicated in every per node database. Overall more data stored across the
Cluster

Slight increase of the worker node CPU and memory usage

Will require refactoring OVN-k8s debugging tools - ovnkube-trace will need to
now work across multiple databases

It ties ovn-kubernetes to the switch per node topology

43

IC Pros

Decentralized architecture, simplifying the deployment (no DBs in RAFT)

Improved e2e latency when bringing up PODs (~30% average and P99 latency
reduction)

Improved resource usage on the central nodes (RSS/CPU needed for
ovn-northd/NB/SB)

No effort needed when developing new OVN-k8s features, allowing “hybrid”
deployments:

o group multiple nodes in the same availability zone to share the worker
resource increase hit

Questions?

