
Classification optimizations to enable
Megaflow offload onto lightweight HW
pipelines
James Choi, Anbuvelu Venkataraman, Kshitij Gupta, Ajay Dubey,
Sathya Narayana Pottimurthy

Notices & Disclaimers

• Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

• Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See
backup for configuration details. No product or component can be absolutely secure.

• Your costs and results may vary.

• Intel technologies may require enabled hardware, software or service activation.

• © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.

Agenda
1. What is megaflow?

2. Difficulty in offloading megaflows to HW.

3. Why is the megaflow formed this way?

4. What can help and why?

5. Prototypes
1. Deriving field subtables from DPCLS subtables
2. Partial offload using field subtables in driver
3. Full Offload to FPGA Pipeline for Field Sub-tables

What is OVS Megaflow cache?
1. Cache of flows from OpenFlow rules

• Doesn’t represent all OpenFlow table (ofproto) rules.
• Created using headers & metadata of 1st packet of a flow

through OFPROTO datapath (ofproto-dpif).

2. Flow key fields with mask for aggregate of u-flows.
• Each key field has mask derived from OF rules. (megaflow)
• Same flows with same masks for all fields are put into a

“subtable” (ie. Same tuple space)

3. Subtables implemented with exact match tables
• Each subtable implemented with exact match / hash table

with unique key mask.

4. Entries from all subtables are non-overlapping
without priorities
• OpenFlow datapath (ofproto-dpif) unwildcarding algorithm

creates non-overlapping megaflows.
• First match == only possible match

5. Each subtable for all fields of all headers and
metadata
• Subtables hold generic key/mask for all fields.

6. Each subtable entry is associated with its action set.

Subtables in OFPROTO-DPIF vs DPCLS
Subtable
Characteristics

OFPROTO-DPIF OpenFlow Tables
- Each OF table w/ multiple subtables
- Each subtable w/ multiple rules with same

key mask
- Each rules with priority
- Entries overlapping

DPCLS Megaflow Megaflow Subtables
- Each subtable w/ multiple flows with same

key mask
- Each flow with no priority
- Entries non-overlapping

HW Megaflow Subtables
- Each subtable w/ multiple flows with same

key mask
- Each flow with no priority
- Entries non-overlapping

How are the megaflows derived from
OFPROTO-DPIF Classifier

How does classifier work? (From classifier.h)

* This is how the classifier works. In a "struct classifier", each form of

* "struct cls_rule" present (based on its ->match.mask) goes into a separate

* "struct cls_subtable". A lookup does a hash lookup in every "struct

* cls_subtable" in the classifier and tracks the highest-priority match that

* it finds. The subtables are kept in a descending priority order according

* to the highest priority rule in each subtable, which allows lookup to skip

* over subtables that can't possibly have a higher-priority match than already

* found. Eliminating lookups through priority ordering aids both classifier

* primary design goals: skipping lookups saves time and avoids un-wildcarding

* fields that those lookups would have examined.

Steps:
1. Use exact match tables to search through all OFPROTO

tables.
1. Each OFPROTO table is organized as subtables

with associated mask.
2. Calculate single non-overlapping match mask to avoid

priority-based lookup in dataplane.
1. Match all possible/relevant subtables to find

rule with highest priority.
2. Create flow wildcard based both matching and

not matching rules evaluated.
3. Find single tuple space that includes headers

from all headers.
3. Calculate single non-overlapping match masks across

all relevant OFPROTO tables by un-wildcarding flow
mask.

How are the megaflows derived from
OFPROTO-DPIF Classifier - Optimizations

Classifier Optimizations
1. Priority Sorting (Lookup Time) - The subtables are kept in a

descending priority order according to the highest priority
rule in each subtable, which allows lookup to skip over
subtables that can't possibly have a higher-priority match
than already found.

2. Staged Lookup (Wildcard Optimization) – Classifier
subtables divided into 4 hash tables: metadata, +L2, +L3,
+all fields. Helps with exact low granularity L4 port values
from being looked up. Reduce total hash entries and helps
with creating larger wildcard fields.

3. Prefix Tracking (Wildcard Optimization) – Utilize longest
prefix match lookup to eliminate subtables lookups based
on possible match or non-match prefix masks.

Goals

1. Wildcard optimizations
1. Reduces # of megaflow subtables and # of

entries.
2. Segment lookups by headers to wildcard

whole headers (e.g. like L4 headers with
exact match rules).

Megaflow: Non-overlapping subtables and entries

OFPROTO Rules OFPROTO-DPIF Rules DPCLS / Megaflow Rules
OFPROTO-DPIF single priority:
1 subtable (mask=b’110)
2 entries (entry=b’10x, b’00x)
DPCLS (w/ 4 packets covered in
rules):
1 subtable (mask=b’110)
2 entries (entry=b’10x, b’00x)

OFPROTO-DPIF single priority:
2 subtable (mask=b’110, b’011)
1 entrie each (entry=b’10x, b’x11)
DPCLS (w/ 4 packets covered in rules):
2 subtable (mask=b’110, b’011)
1 entry each (entry=b’10x, b’x11)

OFPROTO-DPIF single priority:
2 subtable (mask=b’110, b’x11)
2 entries (entry=b’10x, b’x01)
DPCLS (w/ 3 packets covered in
rules):
1 subtable (mask=b’111=b’110|b’011)
3 entries (b’100, b’001, b’101)

Megaflow: Non-overlapping subtables and entries
in 2 header fields

OFPROTO Rules OFPROTO-DPIF Rules DPCLS / Megaflow Rules

Megaflow Subtable Mask is
longer = b’110 111

Header field 1:
OFPROTO-DPIF single priority:
1 subtable (mask=b’110)
2 entries (entry=b’10x, b’00x)
DPCLS (w/ 4 packets covered in rules):
1 subtable (mask=b’110)
2 entries (entry=b’10x, b’00x)

Header field 2:
OFPROTO-DPIF single priority:
2 subtable (mask=b’110, b’011)
1 entrie each (entry=b’10x, b’x11)
DPCLS (w/ 4 packets covered in rules):
2 subtable (mask=b’110, b’011)
1 entry each (entry=b’10x, b’x11)

Megaflow: Non-overlapping subtables and entries
in 2 OF Tables

OFPROTO Rules OFPROTO-DPIF Rules DPCLS / Megaflow Rules
Flow Keys from both Tables.
Megaflow subtable mask is
smaller b’111 = (b’110 | b’011)
requiring more entries

Table 1:
OFPROTO-DPIF single priority:
1 subtable (mask=b’110)
2 entries (entry=b’10x, b’00x)
DPCLS (w/ 4 packets covered in
rules):
1 subtable (mask=b’110)
2 entries (entry=b’10x, b’00x)

Table 2:
OFPROTO-DPIF single priority:
2 subtable (mask=b’110, b’011)
1 entrie each (entry=b’10x, b’x11)
DPCLS (w/ 4 packets covered in
rules):
2 subtable (mask=b’110, b’011)
1 entry each (entry=b’10x, b’x11)

Difficulties in offloading megaflows to HW
Megaflow entries
chracteristics

Difficulties in offloading to HW

Longer mask length • More resource/space in HW to hold
longer keys.

• More permutations possible for more
subtables == parallel hash table lookups
with different key/mask in HW. (Tuple
Space Explosion)

Smaller mask • More resource/space in HW to hold more
entries per subtable.

For better HW utilization, need flexibility to decomposition
into smaller units to utilize all HW block based on usage of
fields.

HW Optimized Flow Offload

What is HW Optimized Field Subtable cache?
1. Cache of flows from OpenFlow rules

• Doesn’t represent all OpenFlow table (ofproto) rules.
• Created using headers & metadata of 1st packet of a flow

through OFPROTO datapath (ofproto-dpif).

2. Flow key fields with mask for aggregate of u-flows.
• Each key field has mask derived from OF rules.
• Same flows with same masks for individual fields are put

into a “ field subtable”

3. Field subtables implemented with different tables
types.
• Each field subtable need not be implemented with per-mask

hash table alone.

4. Entries from all field subtables are non-overlapping
without priorities
• OpenFlow datapath (ofproto-dpif) unwildcarding algorithm

creates non-overlapping entries.
• First match == only possible match

5. Each field subtable is for single field of a header
• Subtables hold generic key/mask for single fields.

6. A set of field subtable entries maps to an action set.
• Need field subtable lookup for each field subtable.

Field Subtables in OFPROTO-DPIF & DPCLS

Fields Subtable
Characteristics

OFPROTO-
DPIF

OpenFlow Tables
- Each OF table w/ multiple subtables
- Each subtable w/ segments of rules with segmented keys and

masks by header fields.
- Each rules with priority
- Entries overlapping

DPCLS
Megaflow

Field Subtables
- Each field subtable w/ organized with data structure to hold

smaller scale entries.
- Each field subtable entries with no priority
- Entries non-overlapping

HW Field Subtables
- Each field subtable maps to different HW blocks, some of which

can handle multiple masks.
- Each flow with no priority
- Entries non-overlapping

Tuple Space Explosion(TSE)
Tuple Space Explosion(TSE) Scenario in “Discrepancy of the MegaFlow Cache in OVS, Part II” by L. Csikor.
(https://www.openvswitch.org/support/ovscon2019/day1/0924-levente_csikor_ovs_con.pdf)

Attack Case for megaflow:
• Single allow rule on SRC_IP, SRC_PORT, and DST_PORT with overlapping default drop rule.
• Produced 8192 (=32 * 16 * 16) masks.

• Mask accommodates all fields
• Each mask with single non-wildcard bit in all of SRC_IP, SRC_PORT, and DST_PORT fields.

• Performance:
• Dramatic drop even in full offload case after 100 masks

Pipeline with field subtables:
• Produce 32 SRC_IP masks, 16 SRC_PORT masks, 16 DST_PORT masks
• Mask length fitting for each field length.
• All field subtables will fit in HW.

Prototypes
• Deriving field subtable from DPCLS subtable

• Partial OVS flow offload using Intel Ethernet 810 card.

• Full OVS flow offload using FPGA based NIC

Prototype: Deriving Field Subtable from
DPCLS_SUBTABLE

 To verify the classification optimization algorithm, decomposition of the megaflow is done to form set of field specific sub tables in
DPCLS and offload action table in PMD context. This prototype is implemented to ensure existing functionality of megaflow action
and the action derived from this optimization algorithm is same.

Data path rule add flow: (Use subtable miniflow)
 OVS fastpath calls ofproto-dpif upcall

processing upon miss of DPCLS
megaflow cache.

 Decompose the offloaded megaflow
from ofptofo classifier output into set
of field key and mask.

 Add each field key and mask into
respective field subtable and associate
an identifier.

 Compute the hash key with
combination of all field-specific
identifiers and store action set from
associated megaflow into new
offload_action table

Prototype: Deriving Field Sub table from DPCLS_SUBTABLE

Lookup flow: (Use packet mini flow)
• Retrieve packet fields from packet miniflow
• Lookup each field subtable and find the identifiers for

each field.
• Generate hash key from all the field-specific identifiers

and retrieve the action from new offload_action table

Delete flow:
• Lookup each field subtable and delete corresponding

entries if reference count is 0.
• Cleanup the associated action in offload action table.

Prototype: Partial HW offload

• OVS Partial offload with
mark action.

• Without changes in ofproto-dpif or
dpcls, field subtable
decomposition still can be done in
the driver layer using the standard
RTE_FLOW interface.

Implementation in Driver layer

Driver:
Data path rule add flow: (Use subtable miniflow)

 DPCLS offloads a megaflow to driver through RTE_FLOW.
 Driver decomposes the RTE_FLOW offload request into set of field key and mask.
 Add each field key and mask into respective field subtable and associate an identifier.
 Compute the hash key with combination of all field-specific identifiers and store action set from associated megaflow into

new offload_action table

Implementation in Driver Layer
Driver:

Delete flow:
a) When revalidator thread deletes a megaflow through RTE_FLOW.
b) Driver looks up individual field subtables and deletes corresponding entries if the reference count is zero.
c) Driver deletes the corresponding action set from offload action table.
d) Sync individual subtables and action with HW tables.

Prototype: Full Offload to FPGA Pipeline for Field Sub-tables

Ingress
Interface Parser

TCAM
TCAMHASH Table/

TCAM

Packet Buffer

Modifier

• Offloading Field Sub tables on FPGA yet keeping it
lightweight requires accommodating a large number of fast
Lookup and hash tables with a variety of configurations

• It requires a variety of fast Hash and Lookup tables to be
populated in a specific manner

• FPGAs allow a combination of static and dynamic
configuration of memory size as well as their
interconnection

• Latest Agilex FPGA(s) provide abundance of SRAMs (259Mb)
running at over 500MHz to realize a high performance
Megaflow pipeline in the FPGA.

• For a typical use case (example: local address: 1K, remote
address: 10K, and Source & Destination Ports: 64K)

• Proposed tables can fit on the chip with low utilization
thereby reducing the latency, and maximizing search
rate and performance

References
1. https://sites.google.com/view/tuple-space-explosion
2. The Discrepancy of the MegaFlow Cache in OVS Part II

(https://www.openvswitch.org/support/ovscon2019/day1/0924-levente_csikor_ovs_con.pdf
3. The Design and Implementation of Open vSwitch

https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf

BACKUP SLIDES

Driver

Update As new rules are offloaded.

Benefit / Goal Reactive megaflow offload mechanism

Implementation in driver
Driver:
1. Megaflows getting offloaded through RTE_FLOW
2. Maintain each RTE_FLOW_ITEM_TYPE_xxx in a field-subtables.
3. Maintain a scheme to map the list of IDs assigned to each field-subtable-entry for all fields to a set of action profile.
4. Each field-subtable-entries maintains the pointer back to the megaflow entries.
5. Each megaflow entries maintain pointers to the subtable-entries.
6. Mapping of each field-subtable-entries to HW is determined by driver.

Scenarios to verify - 1

Design details + scenarios.

Scenarios Description Observation

Multiple masks in same OVS sub
table with L3 parameters in key
and rules

Send the traffic such a way that
multiple packets contains same
packet fields and hit the different
OpenFlow rules.

1. Observed that different entries
added in field specific sub tables
2. Action in the driver and OVS DPCLS
is same.

Multiple masks in different OVS
sub table with L3 parameters in
key and rules

Send the traffic such a way that
multiple packets contains different
packet fields and each packet
create a different sub table

1. Observed that different entries
added in field specific sub tables
2. Action in the driver and OVS
DPCLS is same for further data packets.

Create multiple masks in same
sub table, where overlapping is
there and with same priority

Add open flow rules such that one
rule contains <ip>/16 as key and
other rule contains <ip>/24 as key
and send the packets to hit both
rules

1. OvS: Classifier already handling the
overlapping and returning action
corresponding <ip>/16 rule.
2. Action in the driver and OVS
DPCLS are same.

Create multiple masks in
same sub table
with overlapping and with
different priority(With longest
prefix)

Add open flow rules such that one
rule contains <ip>/16 as key and
other rule contains <ip>/24 as
keyand priority as high.
send the packets to hit both rules

TBD

Scenarios to verify - 2
Scenarios Description Expectation

Delete OpenFlow when multiple
masks installed in different OVS
sub table

1. Send the traffic such a way that multiple
packets contains different packet fields and
each packet create a different sub table
2. Delete the OpenFlow rules

When actions associated
with mega flows being
changed, offload actions
also need to be changed
in driver.

Delete Port when multiple masks
installed in different OVS sub
table

1. Send the traffic such a way that multiple
packets contains different packet fields and
each packet create a different sub table
2. Delete the port associated with action

When mega flow rules
being deleted,
corresponding entries in
offload table also need to
be changed in driver.

Modify OpenFlow action when
multiple masks installed in
different OVS sub table

1. Send the traffic such a way that multiple
packets contains different packet fields and
each packet create a different sub table
2. Modify the action associated with the rule.

When mega flow action
being modified, offload
action also need to be
modified in driver.

Create LAG with LACP enabled in
active-backup mode. Perform
failover

1. Send traffic before failover
2. Perform failover
3. Send traffic after failover

After failover HW offload
and DPCLS actions should
be same.

Prototype at DPIF-NETDEV - 1

Design details + scenarios.

Scenarios Description Observation

Multiple masks in same OVS
sub table with L3 parameters
in key and rules

Send the traffic such a way that
multiple packets contains same
packet fields and hit the different
OpenFlow rules.

1. Observed that different entries
added in field specific sub tables
2. DPCLS and mega flow offload action
same.

Multiple masks in different
OVS sub table with L3
parameters in key and rules

Send the traffic such a way that
multiple packets contains different
packet fields and each packet create a
different sub table

1. Observed that different entries
added in field specific sub tables
2. DPCLS and mega flow offload action
same for further data packets.

Create multiple masks in same
sub table, where overlapping
is there and with same priority

Add open flow rules such that one
rule contains <ip>/16 as key and
other rule contains <ip>/24 as key
and send the packets to hit both rules

1. OvS: Classifier already handling the
overlapping and returning action
corresponding <ip>/16 rule.
2. DPCLS and offload actions are same.

Create multiple masks in same
sub table with
overlapping and with different
priority(With longest prefix)

Add open flow rules such that one
rule contains <ip>/16 as key and
other rule contains <ip>/24 as keyand
priority as high.
send the packets to hit both rules

TBD

Prototype at DPIF-NETDEV - 2
Scenarios Description Expectation

Delete OpenFlow when multiple
masks installed in different OVS
sub table

1. Send the traffic such a way that multiple
packets contains different packet fields and
each packet create a different sub table
2. Delete the OpenFlow rules

When actions associated
with mega flows being
changed, offload actions
also need to be changed

Delete Port when multiple masks
installed in different OVS sub
table

1. Send the traffic such a way that multiple
packets contains different packet fields and
each packet create a different sub table
2. Delete the port associated with action

When mega flow rules
being deleted,
corresponding entries in
offload table also need to
be changed

Modify OpenFlow action when
multiple masks installed in
different OVS sub table

1. Send the traffic such a way that multiple
packets contains different packet fields and
each packet create a different sub table
2. Modify the action associated with the rule.

When mega flow action
being modified, offload
action also need to be
modified.

Create LAG with LACP enabled in
active-backup mode. Perform
failover

1. Send traffic before failover
2. Perform failover
3. Send traffic after failover

After failover offload and
DPCLS actions should be
same.

