Open vSwitch Extensions with BPF

Paul Chaignon
Orange Labs, France

December 5, 2018

Open vSwitch Fall Conference 2018

Not a New Datapath!

m Previous and next talks on new 1/O techniques for OVS

1/19 Open vSwitch Fall Conference 2018, December 5, 2018

Not a New Datapath!

m Previous and next talks on new 1/O techniques for OVS

m This talk on extending Open vSwitch at runtime

1/19 Open vSwitch Fall Conference 2018, December 5, 2018

Motivations: A Recurring Subject

SoftFlow: A Middlebox Architecture for Open vSwitch
Tithan J. Jackson” Melvin Walls Aurojit Panda” Justin Petiit®
Ben Pfaff” Jamo Rajahalme® Teemu Koponen® Scout Shenker'®

“VMware, Inc.

Abstract
Open vSwitch is a high-performance. multi-layer virtual

itch that serves as a flexible foundation for building
rtaloed satees Laer 2and 3 retwork senes n -

TUC Berkeky *Styra, Inc.

SICSI "Penn State Harrisburg

necessaily on the stateless naure of OpenFlow (o produce
consisient results — with the exact same header
must he forwarded the exact same way every single time.
Middleboves® reliance: on intemal state and inspection of

lenant dataceniers. As packet ke differsut forwarding
providing tenants with vlmlallmd middlebox services isan decisions for packets with the same header. This breaks
increasingly importantand rocuring teme, yolil emains i the fundamental assumptons ofthe flow cache.

Itio staieful i » Packet

ficul inlo
vSwitch and its OpenFlow forwarding model: middieboxes.
perform complex operations that depend on inemal state
and inspection of packet paylcads — functionality which is
impossibie 10 express i OpenFlow, In this I We present
SoftFlow, anextension of Cpen vSwitch that seamlessly ine-
grales middiebox functionality while maintsining the familiar
OpenFlow forwarding mode] and performing significantly
beier than altemative techniques for middlebox integration

1 Introduction

With the rise of network virtualization, the primary
provider of metwork srvices in virualzed clouds has
migraied from the physical datacenier fabric to the
hypervisor vimual switch This trend demands virtual
switches implement vimual nerworks that faithfully
renroduce complex 1.2—1.3 network tooolosies that were

among all network secvices it long comples rvioe
chains must perform many times for a given packet
Whill it is feasible to inegrate middieboxes with Open
¥Swilch using virtual machines, ifs unclear how (o share
this work across middlebaxes as Open vSwitch is able
o for stateless 1213 OpenFlow pipelines
In this paper we design SoftFlow, a data plane forwarding
model with unified semantics for all types of packet
operations. SoftFlow is an exiension of Open vSwitch
designed around three design principles:

Maintain the Open vSwitch forw: Open
vSwitch is built on OpenFlow, which has urgnamy helped it
achieve the wide: deployment it enjoys today and we see no
reason (o ahandon il. A greal deal of traditional middiebox
functionality, e.g. 12, L3, and ACL processing, can he

Motivations: A Recurring Subject

PISCES: A Programmable, Protocol-Independent

Software

Switch

Muhammad Shahbaz*, Sean Choi-, Ben Pfaff', Changhoon Kim?®,
Nick Feamster-, Nick McKeown®, Jennifer Rexford*

*Princeton University *Stanford University
http://pisces.cs

Abstract

P tches (o sker p from
vinual machines (VMs). These switches frequently need up-
erading and customization—to support new protocol headers
or encapsulations for tunneling and overlays. to improve mea-
surement and de bugging features, and even to add middiebox-
like functions. Software switches are typically based on alarge
body of code, including kemel code, and changing the switch
is a formidable undertaking requiring domain mastery of net-
work protocol design and developing, testing. and maintaining
a large, complex codebase. Changing how 2 software switch
forwards packets should not reguire intimat knowledge of its
implementation. Instzad, it should be possible to specify how
packets are processed and forwarded i a high-level domain-
specilic language (DSL) such as P4, and compiled (o run on
a software switch. We present PISCES, a software switch
derived from Open vSwitch (OVS), a hard-wired hy pervisor
switch, whose behavior is customized using P4. PISCES is not
hard-wired to specific protocols; this independence makes it
easy (o add new features, We also show how the compiler can
analyze the high-level specification to optimize forwarding

VMware, Ine *Barefoot Networks, Inc
.princeton.edu

1 Introduction

Software switches, such as Open vSwitch (OV'S) [S7], play a
ke role in modem data centers: with few exceptions, every
‘packe! that passes 10 or from a virtual machine (VM) passes
through a software switch. In addition, servers greatly oul-
number physical switches in this environment. Therefore, a
data center full of servers running hypervisor software also
contains far more software swilches than hardware switches
Likewise, because each hypervisor hosts several VMs, such a
data center has more virtual Ethermet ports than physical ones.
One of the main advantages of a software hypervisor switch

is that it can be upgraded more easily than a hardware switch.
As a result, hypervisor swilches support new encapsulation
‘headers, improved wroubleshooting and debugging features,
and middiebox-like functions such as load balancing, address
virtualization, and encryption. In the future, as data center
i P heir they will

‘continue to add features to hypervisor switches.
Each new feature requires customizing the hypervisor
switch, yet making these customizations is more difficult than

Motivations: A Recurring Subject

Abstract
A key benefit of Software Defined Networks i fine-grained
management. of network flows made possible by the exe-
cution of flow-specific. actions based upon inspection and
‘matching of various pcket fields. However, current switches
and protoeols limit the inspected fields to layer 2-1 headers
and hence any customized flow-handling that uses higher-
layer information necessitates sending the packets to the
controller. "This & inafficiant and slow, adding saveral switch-
to-controller round-trip delays. This paper propases an ex-
tended SDN architecture that enables fast customized packet-
handling even when the information used is not restricted to
L2-L4. We deseribe an implementation of this architecture
that keeps mast of the processing in the dsta plane and limits
the need to send packets to the controller cven when higher-
Iayer information i used in packet-handling. We show how
me popular applications can be implemented using this
extended architecture and evaluate the performance of one
such application using a prototype implementation on Open

Application-aware Data Plane Processing in SDN

Hesham Mekky FBIE Hao Sarit Mukherjee
Unrversny of \meﬂma Bell Labs Alcatel-Lugent Bell Lalst\calel u
is i
hesham@cs umn.edu Ian% hac@alsatel— sarit. mukherjee@alcatel-
lucent.com lucent.com

Zhi-Li Zhang TV Lakshman
University of Minnesota el Labs Alatel Lueent

Minneapolis, MN Holmdel, NJ
zhzhang@cs.umn.edu tv.lakshman@alcatel-

lucent.com

Keywords
Software-Defined Networking: OpenFlow; Open vSwitch; Data
Plane

1. INTRODUCTION
Software Defined Networking (SDN) is & new parsdigm
permitting application-aware management of networks. oo
key aspects of SDNs are: (i} & flexible flow-based forward-
ing abstraction that can be used for programming the data
plane(e.g., OpenFlow switches)using an open APL (1) a
logically-centralized control plane sbstraction that can be
..z.d by network applications, network “apps”, to perform
wark-wide operations without low-level configuration of
vl mecmerk dlemente. SONe ace curently being do-
or managing g cata cente ncevorks that e to
be applicat 18] and for
traffic enginsering [6,7].
To keep the data plane simple and efficient, the current

TV 7 T TEN-TeveT T Tz T AT

Motivations: A Recurring Subject

Instrumenting Open vSwitch with Monitoring
Capabilities: Designs and Challenges

Zili Zha', An Wang', Yang Guo®, Doug Montgomery®. Songging Chen"

"Georgs Mason University

ABSTRACT

Recent advances in Software-Defined Networking (SDN)
have enabled flexible and programmable network measure -
ment. A promising trend is 1o conduct network traffic mea-
surement on deployed Open vSwitches (OVS) in data
cenlers. However, little atlention has been paid to the design
options for conducting traffic measurement on the OVS. In
this study, we set 10 explore different design choices and imves-
tigate the corresponding trade-offs among resource consump-
tion, measurement accuracy, implementation complexity, and
impact on swilching speed. For this purpose, we empirically
design and implement four different measurement schemes
in OVS, by either closely inteprating forwarding and mea-
surement functions into a pipeline. or decoupling them into
paralle] operations. Through extensive experiments and con-
parisons, we quantitatively show the various trade-offs that
the different schemes sirike to halance, and demonstrate the
sty of instrumenting OV with monitoring capabilites.

NIST

OVS [2]', become widely adopted for use as host-machine
edge-routers in data centers, they ar increasingly used as the
monitoring devices [15-17, 22, 23]. For instance, the authors
in [22] proposed a user-defined programmable traffic monitor-
ing interface on OVS. As general purpose physical machines
become more computationally powerful, posses more mem-
oy, and are equipped with speedier network inerface cards;
over time, more functionality such as routing and monitoring
can be run at the edges.

Incorporating traffic monitoring capability into a softwane
switch offers the opportunity to share the key functionali-
ties required by monitoring that have been implemented in
a software swilch. However, the design of such an inkegra-
tion is challenging in order to achieve minimal forwarding-
monitoring function interference, optimal code sharing, and
efficient CPU/memory resource usage. In this study, we set
to empirically investigate the different design trade -offs using
OVS as & representaine software swilch. We start with an
. called FCAP (Flow CAPture scheme), when:

“These results provide ights into which design will
hest serve various measurement and monitoring needs.

the forwarding and monitoring forms a pipeline in the OVS
kemel. In FCAP, a packel traverses through the forwarding

TV 7 T TEN-TeveT

TO DI TOTWATOE

Motivations: A Recurring Su

bject

EEE -EEE

Network Function Virtual

ization Enablement Within

SDN Data Plane

Hesham Mekky®, Fang Hao!, Sarit Mukherjee!, T. V. Lakshman', and Zhi-Li Zhang®

*University of Minne

Absiraci—Software Defined Networking (SDN) can benelil a
Network Function Virtualization solution by chaining a set of
petwork functions (NF) (0 croate a nebwork service. Currently,

trol on NFs s Isolated from the SDN, which ereates routing
inflexibility, flow imbalance and choke points in the network s

challenging. In this paper, we postulake native NFs within the
SDN data plane, where the same logical controller controls
twork servi s it cnsbied by extending

in the packet beyond layers 2-4. As a result, NF instances can
be chained on demand, dircetly on the data plane. We present
an implementation of this architecture based on. Open ¥Switch,
and shaw that it enables popular NFs effectively using detatled
evaluation and comparison with other alternative solutions.
1. INTRODUCTION

Network Function Virtualization (NFV) revolutionizes the
design. deployment, and consumption [1] in alized data
centers. Conventionally, a Network Function (NF), such as
load balancer, is often implemented as a specialized hardware
device. NFV decouples the NFs from the hardware platform
and makes them run on software like virtual machines running
atop a hypervisor on a commodity server, which reduces cost

sota. TNokia Bell Labs,

1o change the state of the packets, and such changes are
invisible to the SDN controller. There are various types of
state changes by NFs: changing the packet contents (e 0. NAT
changes addresses/ports), dropping packets (e.g . firewall), or
absorbing packets and generaling new ones (e.g.. L7 load
balancer terminates client’s TCP session and establishes new
session with the appropriate server). The SDN controller
remains unaware of how packets are modified by the NFs
in the middle. and may lose the capability Lo track fiows [2],

Two approaches have been propased in the literature that
address these issues from two angles. OpenNF [3] proposes
a virtualized NF architecture where NFs are confrolied by
a central OpenNF controlker thal interacts with the SDN
controller. It maintains two distinct sub-systems and NFs remain
separate enfities outside the SDN. Flowlag [2] propases to use
SDN I support service chaining by redefining certain packet
header fields as Lags to track flows. This stll keeps NFs outside
the purview of SDN. It also requires customized changes to
each NF o make them tag-aware, which introduces dependency
between the processing logic at different NFs,

In this paper, we propose NEWS (NFV Enablement Within
SDIN Data Planc), a solution focusing on how SON's complete:
knowledge of the network state can he maintained in a central

Temnel, Tn FCAP. 2 packel traverses through the Torwarding

TV 7 T TEN-TeveT

TO DI TOTWATOE

Motivations: A Recurring Subject

2/19

Enabling Practical Software-defined Networking
Security Applications with OFX

John Senchack Adam 1. Aviv
University of Pennsylvania United States Naval Academy
jsonch@seas. upenn.edu aviv @usnaedu

Abstraci—Software Defined Networks (SDNs) are an appeal-
ing platform for network sccurity applications. However, exlsting
approaches (o building sccurity spplications on SDNs are not
practical ane Net-
work security applications often necd o analyze and process tral-

in more advanced ways than SDN data planc Implementations,
such as OpenFlow, allow. Much of an application cnds up running
on the centralized controller, which forms an inherent botticneck.

cnable practical SDN swcurily applicalons ithin an cxising

Toud software modules dluﬂb wnto unmodified petwork switches
here applicaton-dependent processing/monioring cun exceute
closer (o the data plane at & rate much closr (o line spe
mplemenied OFY.modues or securts ‘applcations mebtding
Silverline (ACSAC'I3), BotMiner (Sec'0S), and several others
motivated by the custom OpenFlow extensions in Avant-Guard
(CCS13). We evaluated OFX on a Pica § 3290 swiich and
found that processing trafic in an OFX module running on the

Eric Keller Jonathan M. Smith
University of Colorado, Boulder University of Pennsylvania
eric.keller@coloradoedu jms @cis.upenn.edu

A Limitations of SDN-based Security Applications

Performance Limitations Network security applications of-
en require processing and analysis techniques that are more
advanced than SDN data planes allow. OpenFlow, the de-
facto SDN standard for controlling switches, has many noted
dala plane limitations [16], [35]. for example. Due (o these
limitations, SDN based security applications must implement
much of their functionality in the confrol plane (ie.. a1 the
centralized network control server that manages the data
switches). Fresco [53] takes this approach, and provides a
framework that simplifies the development of control plane

newwork security applications. Hwamr implementing func-
tionality in the control plane hinders performance because
communication channel belween the data plane and control
plane is a botlleneck that adds latency and limits the amount
Of traffic that the security application can process. It also limits
scalability because there are usually far Eewer controllers than
switches in a netw

For SDN to0 be practical for security applicati
the data plane needs to support more advanced

Sl 4 2

G

Temnel, Tn FCAP. 2 packel traverses through the Torwarding

TV 7 T TEN-TeveT

TO DI TOTWATOE

= — T

Open

vSwitch Fall Conference 2018, December 5, 2018

Motivations: L4 Load Balancing

m L4 load balancing

— Redirect to L4LB process is expensive!

3/19 Open vSwitch Fall Conference 2018, December 5, 2018

Motivations: L4 Load Balancing

m L4 load balancing
— Redirect to L4LB process is expensive!
= Monitoring

— E.g., collect per-flow statistics without per-flow OpenFlow rules
— Per-flow OpenFlow rules cancel any megaflow cache benefit

3/19 Open vSwitch Fall Conference 2018, December 5, 2018

Motivations: L4 Load Balancing

m L4 load balancing
— Redirect to L4LB process is expensive!
= Monitoring

— E.g., collect per-flow statistics without per-flow OpenFlow rules
— Per-flow OpenFlow rules cancel any megaflow cache benefit

m Experimentation

— E.g., match on GTP v2 (GPRS Tunneling Protocol) TEID

Open vSwitch Fall Conference 2018, December 5, 2018

Motivations: P4 Programmable Actions

m P4 comes with programmable actions

m Needed for full P4 support in Open vSwitch

action set_nhop(bit<48> nhop_dmac, bit<32> nhop_ipv4,
bit<9> port) {
hdr.ethernet.dstAddr = nhop_dmac;
hdr.ipv4 .dstAddr = nhop_ipv4;
standard_metadata.egress_spec = port;
hdr.ipv4.ttl = hdr.ipvd.ttl — 1;

Listing 1: Example P4 action

Open vSwitch Fall Conference 2018, December 5, 2018

Summary

1. Motivations
2. Design Overview
3. Problem: Non Determinism of Actions

4. Solutions

4.1 SoftFlow: Use Developer’s Input
4.2 Oko: Prohibit Writes
4.3 QOko v2: Use Verifier's Input

5. Conclusion

Open vSwitch Fall Conference 2018, December 5, 2018

Design Overview

Source Destination Actions
* 10.0.0.1 action:«
action:f,

* 10.0.0.2 output : 2

Table: Simplified OpenFlow table with programmable actions.

Open vSwitch Fall Conference 2018, December 5, 2018

Design Overview

Source Destination Actions
* 10.0.0.1 action:«
action:f,

* 10.0.0.2 output : 2

Table: Simplified OpenFlow table with programmable actions.

Programmable actions can:
m Write to packets at arbitrary offsets

m Access persistent data structures

Open vSwitch Fall Conference 2018, December 5, 2018

Problem: Non Determinism of Actions

Source Actions Source Actions

set_source:10.0.0.2, 10.0.0.2 | output:1

10.0.0.1 goto_table:2 * output:2
(a) Table 1 (b) Table 2

7/19 Open vSwitch Fall Conference 2018, December 5, 2018

Problem: Non Determinism of Actions

Source Actions Source Actions
set_source:10.0.0.2, 10.0.0.2 | output:1
10.0.0.1 goto_table:2 * output:2
(a) Table 1 (b) Table 2
Source Actions
set_source:10.0.0.2,
10.0.0.1 output: 1

(c) Megaflow cache

TABLES: Simplified OpenFlow pipeline with set field action.

Open vSwitch Fall Conference 2018, December 5, 2018

Problem: Non Determinism of Actions

Source Actions Source Actions

action:a, 10.0.0.2 | output:1

10.0.0.1 goto_table:2 * output:2
(a) Table 1 (b) Table 2

8/19 Open vSwitch Fall Conference 2018, December 5, 2018

Problem: Non Determinism of Actions

Source Actions Source Actions
10.0.0.1 | oeioniy, | (12002 output:t
(2) Table 1 (b) Table 2
Source Actions
10.0.0.1 iﬁlp‘ﬁoé

(c) Megaflow cache

TABLES: Simplified OpenFlow pipeline with programmable action.

Open vSwitch Fall Conference 2018, December 5, 2018

Problem: Non Determinism of Actions

Source Actions Source Actions
10.0.0.1 | oeioniy, | (12002 output:t
(2) Table 1 (b) Table 2
Source Actions
10.0.0.1 | 3¢ reniate

(c) Megaflow cache

TABLES: Simplified OpenFlow pipeline with programmable action.

Open vSwitch Fall Conference 2018, December 5, 2018

SoftFlow: Use Developer’s Input

m Programmable action sets sf_coalesce variable to indicate whether
new lookup is required

Source Actions Source Actions
action:q, 10.0.0.2 | output:1
goto_table:2 * output:2

(a) Table 1 (b) Table 2

10.0.0.1

Source Actions
action:«,
if sf_coalesce then output:2 else recirculate

10.0.0.1

(c) Megaflow cache

TABLES: Simplified SoftFlow pipeline.

Open vSwitch Fall Conference 2018, December 5, 2018

Oko: Quick Word on BPF

m BPF: bytecode used in the Linux kernel
m Provides software fault and memory isolation

m Comes with static analyser known as the verifier

Checks control flow graph of BPF programs is cycle free

Walks all paths through the control flow graph
Infers basic types for registers (ex. PACKET_PTR, SCALAR)

Checks bounds for all memory accesses

Checks validity of other instructions, etc.

Open vSwitch Fall Conference 2018, December 5, 2018

Why BPF?

m Other isolation mechanisms possible: WebAssembly, XFI, Rust+LLVM,
NaCl, etc.

m Already used in Linux kernel for similar applications

Supported by LLVM/Clang
m Minimal instruction set and capabilities

m Low runtime overhead thanks to static analysis

12/19 Open vSwitch Fall Conference 2018, December 5, 2018

Oko: Prohibit Writes

13/19 Open vSwitch Fall Conference 2018, December 5, 2018

Oko: Prohibit Writes

m BPF verifier prevents packet writes
m BPF programs act as match fields

m Return 1 to match packet, 0 otherwise

Source Destination BPF Program | Actions

* 10.0.0.1 « output:1
* 10.0.0.1 - output:2
* * - drop

Open vSwitch Fall Conference 2018, December 5, 2018

Oko: Prohibit Writes

Unnecessary restrictive:

m Writing to packets is a fairly common need...

m Even basic dispatch (ex. LB) is cumbersome:

Source Destination BPF Program | Actions
* 10.0.0.1 (e %1 output:1
* 10.0.0.1 Qo output:2
* 10.0.0.1 a3 output:3
* * - drop

Open vSwitch Fall Conference 2018, December 5, 2018

Oko v2: Use Verifier's Input

m BPF verifier knows when a program writes to packets

m Thus, recirculate packets for these programs only

15/19 Open vSwitch Fall Conference 2018, December 5, 2018

Oko v2: Use Verifier's Input

u BPF verifier knows when a program writes to packets

m Thus, recirculate packets for these programs only

m But a program with packet writes may not always need new lookup

15/19 Open vSwitch Fall Conference 2018, December 5, 2018

Oko v2: Use Verifier's Input

m BPF verifier rewrites packet write instructions

— Compare written bits with bits used for megaflow match

— If bits in common, recirculate packet

16/19 Open vSwitch Fall Conference 2018, December 5, 2018

Oko v2: Use Verifier's Input

m BPF verifier rewrites packet write instructions

— Compare written bits with bits used for megaflow match

— If bits in common, recirculate packet

m Additional overhead for packet writes

m Need to track bits used for megaflow match

Open vSwitch Fall Conference 2018, December 5, 2018

Don’t you already know which bits are used for
megaflow match?

Destination Actions Destination | Actions
0001 | s | [o
(2) Table 1 (b) Table 2
Destination Actions
10.0.0.1:80 |y

(c) Megaflow cache

TABLES: Simplified OpenFlow pipeline with programmable action.

Open vSwitch Fall Conference 2018, December 5, 2018

Summing up

m Problem: Programmable actions require additional slow path lookups

m Several solutions explored:

Developer tells Open vSwitch if new lookup is necessary

No packet writes => no need for new lookup

Verifier checks at load time if new lookup necessary

— Verifier rewrites packet write instructions to keep track of need for new
lookup

Open vSwitch Fall Conference 2018, December 5, 2018

Conclusion

= Open questions:

— What control plane protocol to manage programs?
— Use Linux's BPF VM or userspace BPF VM?

— Programs take struct dp_packet or struct flow as argument?

m RFC patchset on mailing list

Open vSwitch Fall Conference 2018, December 5, 2018

Thank you for listening!

Overhead?

3'0 B /7 N

—_ 77

= 7

=3 7

o 77
2

2 L0l A |

. %

E s

£ 7

o 2%

3 .

] 1.0 - A% ||/ open vSwitch

= ’ 20400k

[= A A BN £ B oko
204000k 77
% 7 B 77 - .
AR 2 {1 1] Oko with 1 program
o /A B 7

0.0
All caches Only megaflow No cache

Figure: Packet classification performance evaluation

21/19 Open vSwitch Fall Conference 2018, December 5, 2018

Overhead?

22/19

Througput (Mpps)

T
[]
[]
e [J
® [J
10 a A R ° ° —
A
A A R . :
5 - —
® Miniflow cache
‘ ‘ ‘ ‘ ‘ A Megaflow cache
0
2 4 6 8 10

BPF program chain length

Figure: Throughput for different BPF chain lengths

Open vSwitch Fall Conference 2018, December 5, 2018

End-to-End Evaluation

,,,,,,,,,,,,,,,,,,,,,,,,

EREEEE » Process

SR 1 PT) S G

aoeds
Kowaw \A

’
4

1 |
1 Switch E ------- DPDK !
! B S |
| : |
! |

aoeds Aiowdw
Youmg

Figure: The three evaluation setups for the end-to-end performance comparison.
Packet copies are only necessary when crossing memory space boundaries.

Open vSwitch Fall Conference 2018, December 5, 2018

End-to-End Evaluation

n 6.0 |- B
o
2
5 4.0 —
~
s
< 20 VM (vhost-user)
= ’ [0 oko
Process with shared memory
0.0

Anti-DDoS Stateful firewall TCP analysis

Figure: Throughput for different packet processing setups

24/19 Open vSwitch Fall Conference 2018, December 5, 2018

How to match new protocol with actions?

m Programs return 1 to execute next action, 0 otherwise
m Control flow goes to table 2 if program gtpv2 matches GTPv2 id

m Programs may also decapsulate packets and recirculate them

Source Destination Actions
action:gtpv2,
* 10.0.0.1 goto_table:2
* * drop

Table: Simplified OpenFlow table with programmable actions.

Open vSwitch Fall Conference 2018, December 5, 2018

What control plane protocol?

= What control plane protocol to load programs and read/write persistent
data structures?

m OpenFlow with new message types in our prototype

m Same protocol as for P4?

6/19 Open vSwitch Fall Conference 2018, December 5, 2018

What if we drop the Linux kernel datapath?

m Next talk on using AF_XDP to receive packets in userspace

m If AF_XDP proves successful, kernel module may not be needed
anymore
m Current prototype extends userspace datapath

m BPF VM implementation in userspace

— Easier to maintain if part of Open vSwitch

— Easier to trust, smaller than Linux's BPF VM

27/18 Open vSwitch Fall Conference 2018, December 5, 2018

Why not use Open vSwitch’s vendor extensions?

m Open vSwitch has extensibility mechanism as “vendor extensions”

m Need to recompile Open vSwitch

m Error prone, not verified like BPF programs

28/19 Open vSwitch Fall Conference 2018, December 5, 2018

How do you prevent loops when recirculating?

Source Stage aicit;?ﬁz Source Stage | Actions
10.0.0.1 0 goto_table:2 10.0.0.2 * output:1
10.0.0.1 1 goto_table:2 * * output:2

(b) Table 2
(a) Table 1
Source Stage Actions
action:q,
10.0.0.1 0 recirculate
10.0.0.1 1 output:2
10.0.0.2 1 output:1

(c) Megaflow cache

TABLES: Simplified SoftFlow pipeline.

Open vSwitch Fall Conference 2018, December 5, 2018

