OVS Performance on Steroids - Hardware Acceleration Methodologies

OVS Conference Nov 2017 Rony Efraim
Agenda

- OVS Offload - Accelerated Switch And Packet Processing (ASAP²)
- Full OVS Offload (ASAP² Direct) - SRIOV
 - Software based VS Hardware based
 - OVS support for HW offload
 - OVS HW Offload – ConnectX-5 performance
 - Future work for HW offload
- Partial OVS Offload (ASAP² Flex) - DPDK
 - RFC OVS-DPDK using HW classification offload
 - Vxlan in OVS DPDK
 - Multi-table
 - vxlan HW offload concept
- Mellanox OVS Offload Community Work
ASAP\(^2\) takes advantage of ConnectX-4/5 capability to accelerate "in host" network stack
- Two main use cases:

ASAP\(^2\) Direct
- Full vSwitch offload (SR-IOV)

ASAP\(^2\) Flex
- vSwitch acceleration
ASAP2-Direct

Full Virtual Switch Offload (SRIOV)
Software based Vs. Hardware based

Traditional Model: All Software
High Latency, Low Bandwidth, CPU Intensive

- OVS-vswitchd
- User Space
- OVS Kernel Module

ConnectX-4: Hardware Offload
Low Latency, High Bandwidth, Efficient CPU

- OVS-vswitchd
- User Space
- OVS Kernel Module
- ConnectX-4 eSwitch

- First flow packet
- Fallback FRWD path
- HW forwarded Packets
OVS support for HW offload

- Changes are made only in the OVS user space code.
- HW offload of flow using TC flower.
- Packets forwarded by the kernel datapath are transmitted on the representors and forwarded by the e-switch to the respective VF or to the wire.
OVS HW Offload – ConnectX-5 performance

<table>
<thead>
<tr>
<th>Test</th>
<th>ASAP2 Direct</th>
<th>OVS DPDK</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Flow VXLAN</td>
<td>66M PPS</td>
<td>7.6M PPS (VLAN)</td>
<td>8.6X</td>
</tr>
<tr>
<td>60K flows VXLAN</td>
<td>19.8M PPS</td>
<td>1.9M PPS</td>
<td>10.4X</td>
</tr>
</tbody>
</table>

- **ConnectX-5 provide significant performance boost**
 - Without adding CPU resources
Future work for HW offload

- Table offload to support recirculate
- Connection tracking
- LAG (bonding) for SRIOV
- VF live migration
ASAP² Flex
HW accelerate OVS-DPDK
For every datapath rule we add a rte_flow with flow id
The flow id cache contains mega flow rules
When packet is received with flow id, no need to classify the packet to get the rule
RFC Performance

- Code submitted by Yuanhan Liu.
- Single core for each pmd, single queue.

<table>
<thead>
<tr>
<th>Case</th>
<th>#flows</th>
<th>Base MPPs</th>
<th>Offload MPPs</th>
<th>improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire to virtio</td>
<td>1</td>
<td>5.8</td>
<td>8.7</td>
<td>50%</td>
</tr>
<tr>
<td>Wire to wire</td>
<td>1</td>
<td>6.9</td>
<td>11.7</td>
<td>70%</td>
</tr>
<tr>
<td>Wire to wire</td>
<td>512</td>
<td>4.2</td>
<td>11.2</td>
<td>267%</td>
</tr>
</tbody>
</table>
- There are 2 levels of switches that are cascaded.
- The HW classification accelerates only the lower switch (br-phys1).
- br-phys1 is a kernel interface for vxlan.
- The OVS datapath is required to classify the inner packet.
The action of a rule can be to go to other table.

It can be used to daisy chain classification rules

<table>
<thead>
<tr>
<th>Table 0</th>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match A → flow ID 1</td>
<td>Match E → flow ID 2</td>
</tr>
<tr>
<td>Match B → drop</td>
<td>Match F → flow ID 3</td>
</tr>
<tr>
<td>Match C → Table 1</td>
<td></td>
</tr>
<tr>
<td>Match D → Table 1</td>
<td></td>
</tr>
<tr>
<td>Default no flow ID</td>
<td>Default flow ID 4</td>
</tr>
</tbody>
</table>
VxLAN HW offload concept

- If the action is to forward to internal interface add HW rule to point to a table named the internal interface.
- If the in port of the rule is internal port (like vxlan), add rule to the table named of the interface with a flow id.
- When a packet is received with a flow id, use the rule even if the in port is internal port.
- A packet that tagged with flow id is a packet that came on a physical port and is classified according to the outer and the inner headers.

```
Table 0
Match A → flow ID 1
Match B → drop + count
Match C → Table 1 + count
Match D → Table 1 + count
Default no flow ID

Table 1
all the rules that the src port is the vxlan interface
Match E → flow ID 2
Match F → flow ID 3
Default flow ID 4
```

Diagram:
- VM
- Tap
- Uplink/PF
- Br-phy1
- Br-int
- VM
- Tap
- vxlan
- Br-phy1
- IP address
- VM
- Tap
- Uplink/PF
- Br-phy1
- IP address
VxLAN HW offload

- If in port is HW port, add rule to the HW action can be flow id or to table according to the port to forward to
- If the in port is internal port (like vxlan), add a rule to all the HW port with action flow id (because traffic can came form any external/HW port)
- The flow id need to be unique

Table 0

- Match A → flow ID 1
- Match B → drop + count
- Match C → Table 1 + count
- Match D → Table 1 + count
- Default no flow ID

Table 1

- all the rules that the src port is the vxlan interface
- Match E → flow ID 2
- Match F → flow ID 3
- Default flow ID 4

Table 1

- all the rules that the src port is the vxlan interface
- Match E → flow ID 2
- Match F → flow ID 3
- Default flow ID 4
Mellanox OVS Offload Community Work

- **Linux Kernel**:
 Using SR-IOV offloads with Open-vSwitch – netdev conf 1.2
 [link](https://netdevconf.org/1.2/papers/efraim-gerlitz-sriov-ovs-final.pdf)

- **Open vSwitch**:
 [PATCH V11 00/33] Introducing HW offload support for openvswitch
 [link](https://mail.openvswitch.org/pipermail/ovs-dev/2017-June/333957.htm)

- **Open Stack**
 Os-vif: [link](https://review.openstack.org/#/c/398277/)
 Nova: [link](https://review.openstack.org/#/c/398265)
 Neutron: [link](https://review.openstack.org/#/c/275616)

- **DPDK**
 RTE_Flow API
 OVS-DPDK RFC:
 [link](https://www.mail-archive.com/ovs-dev@openvswitch.org/msg12562.html)
ASAP² Mellanox team

- Roi Dayan
- Paul Blakey
- Hadar Hen Zion
- Mark Bloch
- Or Gerlitz
- Natali Shechtman
- Natan Oppenheimer
- Oded Shanoon
- Olga Shern
- Yuanhan Liu
- Moshe Levi

- Rabie Loulou
- Rony Efraim
- Shahar Klein
- Shani Michaeli
- Tal Anker
- Haggai Eran
- Ilya Lesokhin
- Lior Narkis
- Vlad Buslov
- Chris Mi
Thank You