

OVS Performance on Steroids - Hardware Acceleration Methodologies

Agenda

- OVS Offload Accelerated Switch And Packet Processing (ASAP²)
- Full OVS Offload (ASAP² Direct) SRIOV
 - Software based VS Hardware based
 - OVS support for HW offload
 - OVS HW Offload ConnectX-5 performance
 - Future work for HW offload
- Partial OVS Offload (ASAP² Flex) DPDK
 - RFC OVS-DPDK using HW classification offload
 - Vxlan in OVS DPDK
 - Multi-table
 - vxlan HW offload concept
- Mellanox OVS Offload Community Work

OVS Offload - Accelerated Switch And Packet Processing (ASAP²)

- ASAP² takes advantage of ConnectX-4/5 capability to accelerate \ offload "in host" network stack
- Two main use cases:

ASAP² Direct Full vSwitch offload (SR-IOV)

ASAP² Flex vSwitch acceleration

ASAP²-Direct

Full Virtual Switch Offload (SRIOV)

Software based Vs. Hardware based

ConnectX-4: Hardware Offload

Low Latency, High Bandwidth, Efficient CPU

Traditional Model: All Software

High Latency, Low Bandwidth, CPU Intensive

OVS-vswitchd OVS-vswitchd User Space User Space Kernel Kernel **OVS Kernel Module OVS Kernel Module** Hardware **ConnectX-4 eSwitch HW forwarded Packets** First flow packet Fallback FRWD path

OVS support for HW offload

- Changes are made only in the OVS user space code.
- HW offload of flow using TC flower.
- Packets forwarded by the kernel datapath are transmitted on the representors and forwarded by the e-switch to the respective VF or to the wire

OVS HW Offload – ConnectX-5 performance

Test	ASAP2 Direct	OVS DPDK	Benefit
1 Flow VXLAN	66M PPS	7.6M PPS (VLAN)	8.6X
60K flows VXLAN	19.8M PPS	1.9M PPS	10.4X

- ConnectX-5 provide significant performance boost
 - Without adding CPU resources

Future work for HW offload

- Table offload to support recirculate
- Connection tracking
- LAG (bonding) for SRIOV
- VF live migration

ASAP² Flex

HW accelerate OVS-DPDK

RFC OVS-DPDK using HW classification offload

- For every datapath rule we add a rte_flow with flow Id
- The flow id cache contains mega flow rules
- When packet is received with flow id, no need to classify the packet to get the rule

RFC Performance

Case	#flows	Base MPPs	Offload MPPs	improvement
Wire to virtio	1	5.8	8.7	50%
Wire to wire	1	6.9	11.7	70%
Wire to wire	512	4.2	11.2	267%

- Code submitted by Yuanhan Liu.
- Single core for each pmd, single queue.

Vxlan in OVS DPDK

- There are 2 level of switches that are cascaded
- The HW classification accelerates only the lower switch (br-phys1)
- br-phy1 is a kernel interface for vxlan
- The OVS datapath is required to classify the inner packet

Multi-table

- The action of a rule can be to go to other table.
- It can be used to daisy chain classification rules

VxLAN HW offload concept

• If the action is to forward to internal interface add HW rule to point to a table named the internal interface

Table 0

Match A → flow ID 1

Default no flow ID

Match B \rightarrow drop + count

Match C → Table 1 + count

Match D \rightarrow Table 1 + count

- If the in port of the rule is internal port (like vxlan), add rule to the table named of the interface with a flow id
- When a packet is received with a flow id, use the rule even if the in port is internal port.
- A packet that tagged with flow id is a packet that came on a physical port and is classified according to the outer and the inner headers

VxLAN HW offload

- If in port is HW port, add rule to the HW action can be flow id or to table according to the port to forward to
- If the in port is internal port (like vxlan), add a rule to all the HW port with action flow id (because traffic can came form any external/HW port)
- The flow id need to be unique

Mellanox OVS Offload Community Work

Linux Kernel :

Using SR-IOV offloads with Open-vSwitch <u>—</u> netdev conf 1.2 https://netdevconf.org/1.2/papers/efraim-gerlitz-sriov-ovs-final.pdf

Open vSwitch :

[PATCH V11 00/33] Introducing HW offload support for openvswitch https://mail.openvswitch.org/pipermail/ovs-dev/2017-June/333957.htm

Open Stack

Os-vif: https://review.openstack.org/#/c/398277/

Nova: https://review.openstack.org/#/c/398265

Neutron: https://review.openstack.org/#/c/275616

DPDK

RTE_Flow API

OVS-DPDK RFC:

https://www.mail-archive.com/ovs-dev@openvswitch.org/msg12562.html

ASAP² Mellanox team

- Roi Dayan
- Paul Blakey
- Hadar Hen Zion
- Mark Bloch
- Or Gerlitz
- Natali Shechtman
- Natan Oppenheimer
- Oded Shanoon
- Olga Shern
- Yuanhan Liu
- Moshe Levi

- Rabie Loulou
- Rony Efraim
- Shahar Klein
- Shani Michaeli
- Tal Anker
- Haggai Eran
- Ilya Lesokhin
- Lior Narkis
- Vlad Buslov
- Chris Mi

Thank You

