
OVS-DPDK for NFV: go live feedback!

Franck Baudin, Principal Product Manager - OpenStack NFV
Anita Tragler, Product Manager - Networking/NFV Platform

November, 2017 - OVS Conference

2

OVS-DPDK typical NFV deployment

Red Hat OpenStack Platform3

NFV deployment today: OVS-DPDK and/or SR-IOV

virtio0

DPDK kernel

OVS-DPDK

OpenStack APIs

compute node regular NICs

virtio1 VF1
DPDKkernel

VF0

regular NICs

DHCP+PXE

Base (VNFs management:
ssh, SNMP, logs)

eth0 eth0

bonded
bonded

bonded

VNFc0 VNFc1

fabric0: user traffic
(provider network)

fabric1: user traffic
(provider network)

bonddataplane
dataplane

 PF0 PF1

Red Hat OpenStack Platform4

Today’s subscriber traffic pattern: PVP*

virtio0

DPDK kernel

OVS-DPDK

compute node

virtio1 VF1
DPDKkernel

VF0eth0 eth0

bonded
bonded

VNFc0 VNFc1

fabric0: user traffic
(provider network)

fabric1: user traffic
(provider network)

bonddataplane
dataplane

 PF0 PF1

P

V

P

10 Gbps chunk of “real Mobile
traffic”**

Average frame size: 600 Bytes

Throughput : 4 Mpps

1 M of established flows***

200 k/s new flows

200 k/s destroyed flows

* Physical - Virtual - Physical

**Numbers for a 10 Gbps chunk:

multiply the numbers by 2.5 for 25 Gbps

divide by 10 for 1Gbps

*** ~contrack, bi-directional 5-tuples

Red Hat OpenStack Platform5

OVS-DPDK: virtio, vhost-user, virtio PMD

Host

user land

kernel

vhost-user

OVS-DPDK
RX TX RX TX

user land
kernel

Guest: 5 vCPUs

virtio driver

RX TX

eth0

ssh, SNMP,
...

Virtio DPDK PMD

RX TXRX TX RX TXRX TX

CPU0 CPU1 CPU2 CPU3 CPU4

VNFc dataplane == stack

ACTIVE LOOP

while (1) {
RX-packet()
forward-packet()

}

Red Hat OpenStack Platform6

OVS-DPDK: VM management interface

Host

user land

kernel

vhost-user

OVS-DPDK
RX TX RX TX

user land
kernel

Guest: 5 vCPUs

virtio driver

RX TX

eth0

ssh, SNMP,
...

Virtio DPDK PMD

RX TXRX TX RX TXRX TX

CPU0 CPU1 CPU2 CPU3 CPU4

VNFc dataplane == stack
● Usually VLAN underlay

○ Sometime VxLAN
● Security groups “on”

○ Stateless
○ Stateful/conntrack

● Usually low traffic
● Dedicated NICs

○ Don’t mix with
subscribers traffic

Red Hat OpenStack Platform7

OVS-DPDK: dataplane interfaces

Host

user land

kernel

vhost-user

OVS-DPDK
RX TX RX TX

user land
kernel

Guest: 5 vCPUs

virtio driver

RX TX

eth0

ssh, SNMP,
...

Virtio DPDK PMD

RX TXRX TX RX TXRX TX

CPU0 CPU1 CPU2 CPU3 CPU4

VNFc dataplane == stack

● Usually VLAN underlay
○ MPLS often requested
○ Few requests for

VxLAN
● Security groups “off”

○ Use a VNF firewall
○ Few requests to add

some ACLs on VMs
(not user traffic but on
VM to VM)

● Bonded NICs
○ Often with LACP
○ Often 9K MTU

8

Per feature and per flow number
performances

Red Hat OpenStack Platform

All tests developed within OPNFV VSperf project

All tests (next slides) done with:

● OVS-DPDK - OVS 2.7 (DPDK 16.11)
● IPv4 traffic
● Same NUMA (VM, DPDK PMDs and NIC)
● RFC2544, 0% acceptable loss rate, 2 mins iterations
● UDP flows, 5 Tuple match, referred as “flows” in the next slides
● DPDK testpmd in the VM, so the VM is never the bottleneck (verified)

9

Measurement methodology overview

VM
DPDK

testpmd

OVS-DPDK

bond

virtio

vhost-user

https://trex-tgn.cisco.com/

Red Hat OpenStack Platform10

Tests matrix

● EMC enabled default value (=100) and disabled
● For 1k, 10k, 100k flows
● OpenFlow pipeline

○ Baseline - port cross-connection (no CT)
○ Conntrack w/ various matches (up to 5 tuple)

OVS-DPDK sees no significant difference
in performance with or without EMC

1M flows to be tested soon...

EMC (Exact Match Cache) performances impact?
Exact Match Cache

Image credits: Intel

https://software.intel.com/sites/default/files/managed/bc/94/f1-open-vswitch-table-hierarchy.png

Red Hat OpenStack Platform11

1k and 10k flows: baseline performances are the same

100k flows: 50% degradation in baseline

1M flows measurements to come

LLC/cache consumption by OVS-DPDK PMD increases with
flow count

Flow (subscriber traffic) count impact
With and without stateless firewall

Red Hat OpenStack Platform12

From Baseline 7 Mpps without firewall (conntrack) and 1k flows..

This is with same NUMA for VNF, PMD threads and DPDK NIC

Cross-numa shows ~50% performance reduction

This is without tunneling, no VxLAN

VXLAN encapsulation adds 30% performance hit

This is without conntrack

This is without QoS

This is without LACP bonding

This is with a friendly VM, not competing for LLC/RAM

Performance Drops to 1.6 Mpps (80% drop) with firewall (CT) and 100k flows.

Individual features impact
For reference, absolute numbers measured with 4-PMDs/4-Hyperthreads/2Cores/1-NUMA-node

13

Other performances aspect

Red Hat OpenStack Platform14

Failover time measurement at various pps, 1k flows

1000 pps: 312ms (312 packets dropped)

100 kpps: 376ms (37595 packets dropped)

1 Mpps: 449ms (448642 packets dropped)

Also part of OPNFV VSPerf suite

LACP with balance-tcp, active/backup

https://trex-tgn.cisco.com/

INSERT DESIGNATOR, IF NEEDED15

OVS-DPDK Live Migration 1/2

VNF

eth0

DPDK-testpmd

OVS-DPDK

compute node dst

eth1 mgt

ssh

[3] ssh on VNF

HW switch

compute node src

100 ms ping [2]
1k flows [1]

VNF

OVS-DPDK

OpenStack 10 GB network used to migrate the VM

● [1] and [2] packet loss measurement
=> downtime measurement

● [3] should stay up
● Measure the total migration time

https://trex-tgn.cisco.com/

Red Hat OpenStack Platform16

Test parameters

● 1 to 5 Mpps subscriber traffic [1]
● OpenFlow pipeline based on NORMAL

○ MAC learning
○ Gratuitous ARP

● 8 GB guest, 2M and 1G huge pages
● Friendly/optimistic parameters

○ testpmd use a single 1GB and few 2M huge pages: a realistic VNF would trash/use way more.
Proposal to add such behavior to testpmd posted on DPDK mailing list.

○ No security groups (conntrack needs to migrate as well?), no QoS, no VxLAN, …
○ 1k flows

Migration time: between 12s and 17s

Service downtime (dropped subscriber traffic): between 100ms and 150ms

OVS-DPDK Live Migration 2/2

17

Other dimensioning parameters

Red Hat OpenStack Platform18

OVS-DPDK Host/VNFs guests resources partitioning
Typical 18 cores per node dual socket compute node (E5-2599 v3)

Host

VNFc2

DPDK NICs

VNF mgt

DPDK NICs

NUMA node0 NUMA node1

one core, 2 hyperthreads

VNFc0

VNFc1

OVS-DPDK
PMDs

host mgt

All host IRQs routed on host cores: the first core of
each NUMA node will receive IRQs, per HW design

All VNFx cores dedicated to VNFx

● Isolation from others VNFs
● Isolation from the host

ovs-vswitchd parameters

● PMDs threads: per user configuration
● dispatcher/revalidator: as many as host CPUs
● Hugepages number: depends on MTUs, NICs

numbers, queues number … formula under
documentation... start with 4GB per NUMA, look at
ovs-vswitch logs, and don’t hesitate to double!

http://ark.intel.com/products/81061/Intel-Xeon-Processor-E5-2699-v3-45M-Cache-2_30-GHz

Red Hat OpenStack Platform19

Challenge: balance the queues among PMD threads

Host

user land

kernel

user land
kernel

Guest: 5 vCPUs

virtio driver

eth0

ssh, SNMP,
...

Virtio DPDK PMD

RX TXRX TX RX TXRX TXRX TX

vhost-user

OVS-DPDK
RX TX RX TX

eth1 (PCI:virtio1)eth0 (PCI:virtio0)

Queues are distributed in a
round-robin fashion among
the PMDs of the proper NUMA
node

=> Could work if all queues
were equally loaded… but
some queues can even not be
used by the guest!

=> Could work if the queues
number is way greater than
the PMD numbers… but rarely
the case

vCPU0 vCPU1 vCPU2 vCPU3 vCPU4

Red Hat OpenStack Platform20

Future: auto-rebalancing
First version landed, testing/experimentation starting!

If pmd-rxq-affinity is not set for rxqs, they will be
assigned to pmds (cores) automatically. The processing
cycles that have been stored for each rxq will be used
where known to assign rxqs to pmd based on a round robin
of the sorted rxqs.

For example, in the case where here there are 5 rxqs and
3 cores (e.g. 3,7,8) available, and the measured usage of
core cycles per rxq over the last interval is seen to be:

- Queue #0: 30%
- Queue #1: 80%
- Queue #3: 60%
- Queue #4: 70%
- Queue #5: 10%

The rxqs will be assigned to cores 3,7,8 in
the following order:

Core 3: Q1 (80%) |
Core 7: Q4 (70%) | Q5 (10%)
core 8: Q3 (60%) | Q0 (30%)

Rxq to pmds assignment takes place whenever
there are configuration changes or can be
triggered by using::

 $ ovs-appctl
dpif-netdev/pmd-rxq-rebalance

commit cd995c739a330dbcaee6433c08ecaad62791a56b

Author: Kevin Traynor <ktraynor@redhat.com>

 Date: Fri Aug 25 00:54:26 2017 -0700

mailto:ktraynor@redhat.com

21

Final thoughts

Red Hat OpenStack Platform22

Out of the box: 2Mpps/ NUMA socket

● 1 core (2HT) per NUMA socket

VM NUMA aware tuning: 4Mpps/ NUMA socket

● 1 core (2HT) per NUMA socket, NUMA awareness workaround (not supported by
OpenStack yet)

Very advanced tuning: 4Mpps/core scaling with the number of cores

● Requires to properly balance the queues manually, until automated queues rebalancing

With OpenStack Newton OVS-ML2
Without any feature like Security Groups or QoS, with 1k flows

Red Hat OpenStack Platform

NFV go-live with OVS-DPDK are taking-off, but they require OVS-DPDK experts support

● More experts needed!!
● Simplification/usability improvement in progress

Per feature performance impact has to be known

● OPNFV VSPerf welcome help!!

All test cases, CI, can be reused as-is for any vSwitch/vRouter, including OVS HW offload

● OPNFV VSPerf welcome any vSwitch/vRouter with or without HW offload

Some cool features still need to be coded, for instance: dynamic and automatic
queues-rebalancing without any packet drop (but we can start by measuring the drops...)

23

OVS-DPDK go live challenges

Thank you!
fbaudin@redhat.com
atragler@redhat.com

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

