Flavio Fernandes
Louis Fourie
John McDowall
Farhad Sunavala

Service Function Chaining for OVN
Networking-sfc / OVN Integration

- Extend ovn-nb schema to add Port Chain, Port-Pair-Group, Port-Pair Tables
- Use Logical Port-pair (pairs of Logical Switch Ports) to define each SF
- Use ovn-nb ACLs as flow-classifiers
Neutron - OVN Architecture

- Neutron drivers invoke `ovn-nbctl`
- SFC Extensions to OVN NB DB
- Translation to OVN SB SFC Logical Flows
- No changes to OVS
"Logical_Port_Chain": {
 "columns": {
 "port_pair_groups": {
 "type": {
 "key": {
 "type": "uuid",
 "refTable": "Logical_Port_Pair_Group",
 "refType": "strong"},
 "min": 0, "max": "unlimited"}
 },
 "isRoot": true},
 "Logical_Port_Pair_Group": {
 "columns": {
 "port_pairs": {
 "type": {
 "key": {
 "type": "uuid",
 "refTable": "Logical_Port_Pair",
 "refType": "strong"},
 "min": 0, "max": "unlimited"}
 },
 "isRoot": false},
 "Logical_Port_Pair": {
 "columns": {
 "outport": {
 "type": {
 "key": {
 "type": "uuid",
 "refTable": "Logical_Switch_Port",
 "refType": "strong"},
 "min": 0, "max": 1}
 },
 "inport": {
 "type": {
 "key": {
 "type": "uuid",
 "refTable": "Logical_Switch_Port",
 "refType": "strong"},
 "min": 0, "max": 1}
 },
 "isRoot": false},
"isRoot": true,
ACL Table Extension for SFC

"ACL": {
 "columns": {
 "priority": {"type": {"key": {"type": "integer", "minInteger": 0, "maxInteger": 32767}}},
 "direction": {"type": {"key": {"type": "string", "enum": ["set", ["from-lport", "to-port"]]}},
 "match": {"type": "string"},
 "action": {"type": {"key": {"type": "string", "enum": ["set", ["allow", "allow-related", "drop", "reject", "sfc"]]}},
 "log": {"type": "boolean"},
 "options": {"type": {"key": "string", "value": "string", "min": 0, "max": "unlimited"}}
 }
}
ovn-nbctl SFC Commands

lchain-add lchain [lsp-pair-group] ...
lchain-del lchain
lchain-set-port-pair-group lchain [lsp-pair-group] ...
lchain-list lchain
lchain-set-options lchain key=value [key=value]...

lsp-pair-group-add port-pair-group [lsp-pair]...
lsp-pair-group-del lsp-pair-group
lsp-pair-group-set-port-pair lsp-pair-group [lsp-pair]
lsp-pair-group-list
lsp-pair-group-set-options lsp-pair-group key=value [key=value]...

lsp-pair-add lsp-pair [inport, outport]
lsp-pair-del lsp-pair
lsp-pair-list
lsp-pair-set-options lsp-pair key-value [key=value] ...

acl-add ls direction priority match sfc [sfc-port-chain=<lchain>]
OVN SB Rules for SFCs on one Logical Switch

- Service Functions shared by multiple SFCs
- Logical rules at each SF outport
SFC/OVN Demo
Load-balance to multiple SFs in a Port-pair Group

Chain A = {PPGX, PPGY}
Chain B = {PPGX}
PPGX = [SF1a, SF2a]
PPGY = [SF2a]
Rxy = Logical Flow Rule
OVN Ingress Pipeline

<table>
<thead>
<tr>
<th>L2 Port Security</th>
<th>Security of ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Port Security</td>
<td>IP Port Security</td>
</tr>
<tr>
<td>ND Port Security</td>
<td>Neighbor discover port security constraints on ARP and IPv6</td>
</tr>
<tr>
<td>Pre-ACL</td>
<td>Handle connection tracking ACL Packets</td>
</tr>
<tr>
<td>Pre-LB</td>
<td>Deal with potentially fragmented packets for LB</td>
</tr>
<tr>
<td>Pre-Stateful ACL</td>
<td>Defragment connection tracking packets</td>
</tr>
<tr>
<td>Service Chain</td>
<td>Service chain steering</td>
</tr>
<tr>
<td>LB</td>
<td>Apply LB rules (extension for LSP balancing)</td>
</tr>
<tr>
<td>Stateful</td>
<td>Continue stateful packets</td>
</tr>
<tr>
<td>ARP Response</td>
<td>Send ARP Response</td>
</tr>
<tr>
<td>DHCP Options</td>
<td>Set DHCP Options on packet</td>
</tr>
<tr>
<td>DHCP Response</td>
<td>Send DHCP Response</td>
</tr>
</tbody>
</table>
1. L2 Port Security Table (ls_in_port_sec_l2). Validates that the source MAC of a packet received from a LSP matches the actual MAC for that port. This must be bypassed since the SF egress ports will send packets with many different source MACs.

2. Chain Table (ls_in_chain) rules (re-)classify traffic and steer it to a rule in the Port Load Balancer (PLB) Table that represents the next hop Port Pair Group.

3. Port Load Balancer (PLB) Table load balances traffic over a set of LSPs in a Logical Switch. Each rule in this Table corresponds to a Port Pair Group and has a Port Load Balance (plb) action which selects an output LSP from a list of output LSPs. Each Port Load Balancer action is mapped to an OVS group where each bucket is a LSP.

   ```
   table=x(ls_in_plb), priority=2002, match=(reg2 == LB_ID),
   action=(plb(weight=x, outportX, weight=y, outportY,
           weight=z, outportZ, ...); next;)
   ```
SFCs that span multiple Logical Switches

- Inport and outport for each SF must be on same LS
- All Port-pairs in a Port-Pair group must be on same LS
Issues for discussion with OVN Team

- SFC that span multiple LS - SFC steering rules on Logical Router
- Enhance OVN LB for port-pair-groups
- NSH-aware SFs
- NSH over Geneve
- GitHub: https://github.com/doonhammer/ovs/tree/sfc.v2
Source Port Rule classifies traffic from the source LSP and steers it to the first Load Balancer entry for the Logical Chain in the PLB Table. Metadata register reg2 selects LB entry in the PLB Table.

\[
\text{table} = x(\text{ls}_\text{in}_\text{chain}), \quad \text{priority} = 2002, \\
\text{match} = (\text{inport} == \text{"ingress-port"} \quad && \text{flow-classifier}), \\
\text{action} = (\text{reg2} = \text{LB}_\text{ID1}; \quad \text{next}(\text{ls}_\text{in}_\text{plb});)
\]

SF Re-classifier Rules re-classifies traffic from the SF outport and steers it to the next Load Balancer in the PLB Table. For an NSH-aware SF the flow-classifier matches the NSP/NSI and for NSH-unaware SF the flow-classifier matches the N-tuple.

\[
\text{table} = x(\text{ls}_\text{in}_\text{chain}), \quad \text{priority} = 2002, \\
\text{match} = (\text{inport} == \text{"SFn-outport"} \quad && \text{flow-classifier}), \\
\text{action} = (\text{reg2} = \text{LB}_\text{IDx}; \quad \text{next}(\text{ls}_\text{in}_\text{plb});)
\]

Final Re-classifier Rule re-classifies traffic from the last SF outport of a Logical Chain and steers it to the destination port.

\[
\text{table} = x(\text{ls}_\text{in}_\text{chain}), \quad \text{priority} = 2002, \\
\text{match} = (\text{inport} == \text{"SFfinal-outport"} \quad && \text{flow-classifier}), \\
\text{action} = (\text{outport} = \text{"destport"}; \quad \text{output};)
\]