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What is eBPF?

• A way to write a restricted C program and runs in Linux kernel
• A new instruction set, but no corresponding HW

• A virtual machine running in Linux kernel

• Safety guaranteed by BPF verifier

• Maps
• Efficient key/value store resides in kernel space

• Can be shared between eBPF programs and user space applications 

• Helper Functions
• A core kernel defined set of functions for eBPF program to retrieve/push data 

from/to the kernel
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Motivation

• Extensibility, when introducing a new datapath feature: 
• Upstream process provides valuable feedbacks 
• Time to upstream could also be unpredictable
• Maintain ABI compatibility between different kernel and OVS 

versions.

• Maintenance cost and compatibility effort
• Keep up with new kernel API changes
• Backport new features to older version
• Bugs in compat code are easy to introduce and often

non-obvious to fix

• eBPF: Implement datapath functionalities in eBPF and 
reduce dependencies on different kernel versions
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Review: Linux and OVS Datapath 
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Current OVS DP:
• Receive packets from 

bridge/device hook

• Parse -> Lookup -> Actions

Actions



Previous eBPF Proposal
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Bridge 
Hook

Introduce eBPF actions:

• Add BPF hook point in OVS 
kernel DP for actions

• New actions could be 
added without updating 
OVS kernel module

Limitations:

• Parsing new protocols 

• Matching new fields



OVS eBPF Datapath 

ovs-vswitchd

Parse Lookup Actions

Goal

• Replace OVS kernel datapath 
entirely with eBPF

• ovs-vswitchd controls and 
manages the eBPF DP

• eBPF map as channels in 
between

eBPF Datapath

eBPF 
maps

6

driver

Hardware

IP/routing

socket

Kernel space

User space

tc hook



Agenda

• Header Parsing

• Flow Table Lookup

• Action Execution

• Performance Evaluation
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Parsing Headers/Metadata using P4

P4-to-eBPF

parserMatch + 
actions

OVS P4 
Program

deparser

metadata
parser

P4-to-eBPF
• Leverage P4-to-eBPF compiler from bcc
• Generate protocol/metadata headers
• Parser walks through the protocol parsing 

graph
• Deparser writes back the packet changes
• Maps for flow lookup and counters 
Limitations for OVS:
• OVS requires Linux-specific metadata fields
• OVS implements its own match + action 

eBPF program

Customized 
for OVS

eBPF maps
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Review: Flow Lookup in kernel Datapath 

Slow Path:

• Ingress: lookup miss and upcall

• ovs-vswitchd receives, does flow 
translation, and programs flow entry 
into flow table in OVS kernel module

• OVS kernel DP installs the flow entry

• OVS kernel DP receives and executes 
actions on the packet

Fast Path:

• Subsequent packets hit the flow cache

Flow Table
(emc + megaflow)

ovs-vswitchd

2. miss upcall
(netlink)

Parser

3. flow installation
(netlink)

4. actions
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1. Ingress



Flow Lookup in eBPF Datapath

Slow Path:

• Ingress: lookup miss and upcall

• Perf ring buffer carries packet and its 
metadata to ovs-vswitchd

• ovs-vswitchd receives, does flow 
translation, and programs flow entry into 
eBPF map

• ovs-vswitchd sends the packet down to 
trigger lookup again

Benefits:

• Use any fixed binary format between 
userspace and kernel eBPF program.

Flow Table 
(eBPF hash map)

ovs-vswitchd

2. miss upcall
(perf ring buf)

Parser+

3. flow installation
(TLV)

4. actions
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Limitation at flow installation:
TLV format currently not supported in BPF verifier
Solution: Convert TLV into fixed length array

1. Ingress



Review: OVS Kernel Datapath Actions

A list of actions to execute on the packet

Example cases of DP actions
• Flooding:

• Datapath actions: 9,55,10,55,66,11,77,88,9,1

• Mirror and push vlan:
• Datapath actions: 3,push_vlan(vid=17,pcp=0),2

• Tunnel:
• Datapath actions: 

set(tunnel(tun_id=0x5,src=2.2.2.2,dst=1.1.1.1,ttl=64,flags(df|key))),1
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FlowTable Act1 Act2 Act3 …



eBPF Datapath Actions

A list of actions to execute on the packet

Challenges
• Limited eBPF program size (maximum 4K instructions)

• Variable number of actions: BPF disallows loops to ensure program termination

Solution:

• Make each action type an eBPF program, and tail call the next action

• Side effects: tail call has limited context and does not return

• Solution: keep action metadata and action list in a map 
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Performance Evaluation

• Sender sends 64Byte, 14.88Mpps to one port, measure the 
receiving packet rate at the other port

• OVS receives packets from one port, forwards to the other port

• Compare OVS kernel datapath and eBPF datapath

• Measure single flow, single core performance with Linux kernel 
4.9-rc3 on OVS server

16-core Intel Xeon 
E5 2650 2.4GHz 
32GB memory
DPDK packet generator

Intel X3540-AT2
Dual port 10G NIC + eBPF Datapath

br0

eth1

ingress Egress

BPFeth0
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14.88Mpps
sender



OVS Kernel and eBPF Datapath Performance

eBPF DP Actions Mpps
Redirect(no parser, lookup, actions, deparser) 1.90
Hash 1.12
Push vlan 1.11
Set dst_mac 0.84
Set dst_mac <no deparser> 1.14
Set GRE tunnel 0.48

OVS Kernel DP
Actions

Mpps

Output 1.34
Set dst_mac 1.23
Set GRE tunnel 0.57

Actions
tc

ingress

tc
egress

Parser deparser
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Opportunity for improving 
parser and deparser

Recap: eBPF DataPath

Lookup

All measurements are based on single flow, single core.



Conclusion and Future Work

Conclusion

• Feasibility of implementing OVS Datapath entirely using eBPF

• Decouple OVS datapath functionality from kernel versions

• Limitation of eBPF might incur performance overhead

Future work

• Complete all the datapath actions, ex: connection tracking

• Megaflow lookup using eBPF map
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Thank You 

Question?

Twitter: @u9012063

u9012063@gmail.com

mailto:u9012063@gmail.com

