
William (Cheng-Chun) Tu
VMware

OVS Conference 2016

Offloading OVS Flow Processing using eBPF



What is eBPF?

• A way to write a restricted C program and runs in Linux kernel
• A new instruction set, but no corresponding HW

• A virtual machine running in Linux kernel

• Safety guaranteed by BPF verifier

• Maps
• Efficient key/value store resides in kernel space

• Can be shared between eBPF programs and user space applications 

• Helper Functions
• A core kernel defined set of functions for eBPF program to retrieve/push data 

from/to the kernel

2



Motivation

• Extensibility, when introducing a new datapath feature: 
• Upstream process provides valuable feedbacks 
• Time to upstream could also be unpredictable
• Maintain ABI compatibility between different kernel and OVS 

versions.

• Maintenance cost and compatibility effort
• Keep up with new kernel API changes
• Backport new features to older version
• Bugs in compat code are easy to introduce and often

non-obvious to fix

• eBPF: Implement datapath functionalities in eBPF and 
reduce dependencies on different kernel versions

3



Review: Linux and OVS Datapath 

driver

Hardware

IP/routing

socket

Kernel space

User space

OVS Kernel 
Datapath

ovs-vswitchd

Parse Lookup

4

Bridge 
Hook

Current OVS DP:
• Receive packets from 

bridge/device hook

• Parse -> Lookup -> Actions

Actions



Previous eBPF Proposal

driver

Hardware

IP/routing

socket

Kernel space

User space

OVS kernel 
Datapath

ovs-vswitchd

Parse Lookup BPF 
Actions

5

Bridge 
Hook

Introduce eBPF actions:

• Add BPF hook point in OVS 
kernel DP for actions

• New actions could be 
added without updating 
OVS kernel module

Limitations:

• Parsing new protocols 

• Matching new fields



OVS eBPF Datapath 

ovs-vswitchd

Parse Lookup Actions

Goal

• Replace OVS kernel datapath 
entirely with eBPF

• ovs-vswitchd controls and 
manages the eBPF DP

• eBPF map as channels in 
between

eBPF Datapath

eBPF 
maps

6

driver

Hardware

IP/routing

socket

Kernel space

User space

tc hook



Agenda

• Header Parsing

• Flow Table Lookup

• Action Execution

• Performance Evaluation

7



Parsing Headers/Metadata using P4

P4-to-eBPF

parserMatch + 
actions

OVS P4 
Program

deparser

metadata
parser

P4-to-eBPF
• Leverage P4-to-eBPF compiler from bcc
• Generate protocol/metadata headers
• Parser walks through the protocol parsing 

graph
• Deparser writes back the packet changes
• Maps for flow lookup and counters 
Limitations for OVS:
• OVS requires Linux-specific metadata fields
• OVS implements its own match + action 

eBPF program

Customized 
for OVS

eBPF maps

8



Review: Flow Lookup in kernel Datapath 

Slow Path:

• Ingress: lookup miss and upcall

• ovs-vswitchd receives, does flow 
translation, and programs flow entry 
into flow table in OVS kernel module

• OVS kernel DP installs the flow entry

• OVS kernel DP receives and executes 
actions on the packet

Fast Path:

• Subsequent packets hit the flow cache

Flow Table
(emc + megaflow)

ovs-vswitchd

2. miss upcall
(netlink)

Parser

3. flow installation
(netlink)

4. actions

9

1. Ingress



Flow Lookup in eBPF Datapath

Slow Path:

• Ingress: lookup miss and upcall

• Perf ring buffer carries packet and its 
metadata to ovs-vswitchd

• ovs-vswitchd receives, does flow 
translation, and programs flow entry into 
eBPF map

• ovs-vswitchd sends the packet down to 
trigger lookup again

Benefits:

• Use any fixed binary format between 
userspace and kernel eBPF program.

Flow Table 
(eBPF hash map)

ovs-vswitchd

2. miss upcall
(perf ring buf)

Parser+

3. flow installation
(TLV)

4. actions

10

Limitation at flow installation:
TLV format currently not supported in BPF verifier
Solution: Convert TLV into fixed length array

1. Ingress



Review: OVS Kernel Datapath Actions

A list of actions to execute on the packet

Example cases of DP actions
• Flooding:

• Datapath actions: 9,55,10,55,66,11,77,88,9,1

• Mirror and push vlan:
• Datapath actions: 3,push_vlan(vid=17,pcp=0),2

• Tunnel:
• Datapath actions: 

set(tunnel(tun_id=0x5,src=2.2.2.2,dst=1.1.1.1,ttl=64,flags(df|key))),1

11

FlowTable Act1 Act2 Act3 …



eBPF Datapath Actions

A list of actions to execute on the packet

Challenges
• Limited eBPF program size (maximum 4K instructions)

• Variable number of actions: BPF disallows loops to ensure program termination

Solution:

• Make each action type an eBPF program, and tail call the next action

• Side effects: tail call has limited context and does not return

• Solution: keep action metadata and action list in a map 

12

FlowTable
eBPF
Act1

Map
lookup

Tail
Call

eBPF
Act2

Map
lookup

…Tail
Call



Performance Evaluation

• Sender sends 64Byte, 14.88Mpps to one port, measure the 
receiving packet rate at the other port

• OVS receives packets from one port, forwards to the other port

• Compare OVS kernel datapath and eBPF datapath

• Measure single flow, single core performance with Linux kernel 
4.9-rc3 on OVS server

16-core Intel Xeon 
E5 2650 2.4GHz 
32GB memory
DPDK packet generator

Intel X3540-AT2
Dual port 10G NIC + eBPF Datapath

br0

eth1

ingress Egress

BPFeth0

13

14.88Mpps
sender



OVS Kernel and eBPF Datapath Performance

eBPF DP Actions Mpps
Redirect(no parser, lookup, actions, deparser) 1.90
Hash 1.12
Push vlan 1.11
Set dst_mac 0.84
Set dst_mac <no deparser> 1.14
Set GRE tunnel 0.48

OVS Kernel DP
Actions

Mpps

Output 1.34
Set dst_mac 1.23
Set GRE tunnel 0.57

Actions
tc

ingress

tc
egress

Parser deparser

14

Opportunity for improving 
parser and deparser

Recap: eBPF DataPath

Lookup

All measurements are based on single flow, single core.



Conclusion and Future Work

Conclusion

• Feasibility of implementing OVS Datapath entirely using eBPF

• Decouple OVS datapath functionality from kernel versions

• Limitation of eBPF might incur performance overhead

Future work

• Complete all the datapath actions, ex: connection tracking

• Megaflow lookup using eBPF map

15



16

Thank You 

Question?

Twitter: @u9012063

u9012063@gmail.com

mailto:u9012063@gmail.com

