User-Programmable
Software Switches

Nick McKeown

Experience so far

Experience with P4 programs written for
Tofino @ 6.5Tb/s

BAREFCO:T

NETWORKS

PISA: Protocol Independent Switch Architecture

Match+Action

I
TAAF
1

AAAAAA

1]
A

AAAAAA

-J--

AAAAAA

-J_-

AAAAAA

-Jm-

19sJed
d|qewweJl3do.d

T

PISA: Protocol Independent Switch Architecture

Match+Action

|

iy

Parser

P4 program

BRI

EEMAE
AAAAAA

HOBEEE
1

1
AAAAAA

ORAAEA

e

PISA Programmable Switch

July 2014

P4 Program Sections

DIroadra oA
Data Declaratio

header_type ethernet t { ...}
header_type 12 metadata t {... }

header ethernet t ethernet;

header vlan tag t vlan tag[2];
metadata 12 metadata t12 meta;

parser parse_ethernet {
extract(ethernet);
return switch(ethernet.ethertype) {
0x8100: parse_vlan tag;
0x0800: parse_ipv4;
0x8847: parse_mpls;
default: ingress;

}

table port table {... }
control ingress {
apply(port_table);
if (12_meta.vlan tags ==0) {
process_assign_vlan();
}
)

Jasled

Header / Metadata

P4 program defines what each table CAN do

Control Plane Roles
Control plane or NOS decides what the switch actually does

program.p4

Data Declarations

Control plane or Switch OS

queue, multicast, mirror

match:action entries
configurations

Parser Program

Herder / Metadate
Queueing,

Replication

Jasled

&
Scheduling

Jasled

Table + Control Flow Program

P4 defined what each table CAN do

10

Protocols and table complexity 20 years ago

Datacenter ToR today
public switch.p4

Visibility and Measurement

Natural questions

* Which switches did it visit to get here?
e What rules did it match in each switch?

 What version of the switch rule tables were present?

* Which queue did each switch put our packet in?

 What was the precise queue occupancy when my packet arrived?
* How long did it wait?

* Whose packets did it sharea queue with?

Two approaches
Each is a P4 program

1. Packet postcards
* Switch generates a small time-stamped digest for every packet

* Sends to server(s) for logging and processing
* Pros: Can replay network history. Packet sizes unchanged.

e Cons: Lots of extra traffic.

Packet Postcards

1%8.

Log, Replay,
Analyze, Control

Two approaches
Each is a P4 program

2. Inband Network telemetry (INT)
» Data packets carry instructions to insert state into packet header
* Pros: No additional packets. Can replay network history.
e Cons: Packet size increases.

In-band Network Telemetry (INT)

Normal Data Packet

“Insert: switchlD, time,
matched rules, queue
occupancy, switch
metadata, ..., ..., ...

14

q@(

1

Original Data Packet

Log, Replay,
Analyze, Control

INT.p4

table int_table {

reads { action export queue latency (sw_id) {
i mroteels add header(int header) ;
} modify field(int header.kind, TCP_OPTION INT);
actions { mod] iceld(int heade en P g
export queue latency; modify field(int header.sw id, sw id);
} - - modify field(int header.gq latency,
} intrinsic metadata.deg timedelta);

add to field(tcp.dataOffset, 2);

add to field(ipvé4.totallLen, 8);

subtract from field(ingress metadata.tcpLength,
12);

Example: Add switch ID and

queue latency to packet

PLT: Path and latency tracking in data-plane

How does it work?
* Collect physical path and hop latency of every packet via INT
* Last hop creates a record per connection
e Records any sudden change in path or latency

How is it used?
* Quickly detect changes in path-latency at line-rate, in data-plane

e Confirm routing table or ACL rule changes in real time
* |dentify connections affected by failure, recovery or maintenance events

CT: Congestiontracking in data-plane

How does it work?
* During congestion, switch takes “snapshot” of every packet
* Snapshot contains packet ID and packet metadata for analysis

How is it used?
* Detect congestion incidents and identify events leading to congestion

e |dentify culprit that is causing queue builds-up
* |dentify persistent congestion and transient congestion

LALB: Add L4 load balancing to every switch

How does it work?
 Ensure per-connection consistency:

Forward every packet in a connection to the same DIP
e Switch maintains per-connection state (typically five million or more)

How is it used?
* Cost saving: Eliminate thousands of servers

CIP > VIP

payload

VIP : {DIP-pool}

P4 prototype available from demo at the 2" P4 workshop

SW-IP > DIP

CIP > VIP
payload

Custom traffic monitoring and filtering

General-purpose stateful memory & Custom hashing
— Explosion of probabilistic traffic monitoring and filtering schemes

Bloom-filter-based whitelist
* For example, remember O(107) items with very low false positives

Heavy-hitter detection via count-min sketch
* For example, track the frequency of O(107) items

Better NetFlow (a.k.a. “FlowRadar”, NSDI’16)

* Switches encode flow-sets using Invertible Bloom Filter and export the encodings
frequently to monitoring servers -- once every few msec

* Monitors decode the encondings network wide and produce NetFlow-like records

Dynamic source routing

Forward packets/flowlets/flows based on current path conditions
* Path condition: Link utilization, queue depth, hop latency, end-to-end latency, etc.

“HULA” at SOSR’16

best = path2
Sender

Host/ToR ,
e e
Cang

1. Keep track of path status
2. Detect flowlets and manage their state

3. Assign best paths to flowets

4. Export hop-level link utilization

Scalable high-frequency OAM

* Offload BFD entirely to data plane using programmable packet generator + stateful memory

» Switches maintain many thousands of BFD sessions with msec-level hello frequency

@ Ingress Pipe Egress Pipe
MAC : —

[Session-ID-Table]

reads {

bfd_session_id
}
action {
set the following fields
* srcand dst address
« srcand dst port

25

Various types of congestion control

Explicit congestion-control protocols running in switches
* RCP, XCP, TeXCP, etc.

Hybrid congestion control — or “Timely++”

e Switches insert ID and queuing latency in every packet
» Sender decides best rate for each connection

Host-to-dst-ToR admission control (network-level VoQ)
* Last-hop ToR enforces “hose-model” traffic via admission control
* High throughput, low latency, and (nearly) lossless without pausing

* Enhanced: hosts expose more info to network, such as traffic type,
message size, deadline, etc.

Flowlet Switching

if (current_time — last_time > timeout) {

Flowlet Table flowlet id += 1

(Register Array) }
last time AL L last_time = current_time;
82019445 4 '
Hash(e.g., 5-tuple) g0z 13 ECMP and LAG
> Next hop and port selection
etadata using
hash of 6-tuple:
5-tuple + flowlet id
81084924 29
82148703 7

Flowlet Switching

Flowlet Table
(Register Array)

last time flowlet id
82019445 4
Hash(e.qg., 5-tuple) 82028039 13
netadata
81084924 29
82148703 7
N

/* data structure */

register flowlet lasttime {

width :

instance count :

register flowlet id {
width :

instance count :

8192;

8192;

>

ECMP and LAG

Next hop and port selection
using
hash of 6-tuple:
5-tuple + flowlet id

Flowlet Switching

Flowlet Table
(Register Array)

last ti flowlet id
R ccp and LA
Hash(e.g., 5-tuple) 82028039 13 Next hop and port selection
"~ > using
hash of 6-tuple:
otadata #define FLOWLET MAP SIZE 13 // 8K table size tuple + flowlet id
U) #define FLOWLET INACTIVE TOUT 50000 // 50ms

/* hash input fields */

field list 13 hash fields {
// 5 tuple

}

" /* hash function */
field 1list calculation flowlet map hash {
input {
13 hash fields;
}
algorithm : crclé6;
output_width : FLOWLET MAP SIZE;

Flowlet Switching

Flowlet Table

last time flowlet id
82019445 4 ECMP and LAG
Hash(e.g., 5-tuple) 82028039 13 > Next hop ar:i iac;rt selection
hash of 6-tuple:
etadata 5-tuple + flowlet id
81084924 29
82148703 7
N J

table flowlet {
actions { lookup flowlet map;

control ingress {
apply (flowlet) ;
apply (ecmp group) ;
apply (ecmp nhop) ;
apply (forward) ;

}

Y

action lookup flowlet map () {

modify field with hash based offset (ingress metadata.flowlet map index,

flowlet map hash, FLOWLET MAP SIZE) ;

add to field(ingress metadata.flowlet id,

ingress metadata.flow ipg > FLOWLET INACTIVE TOUT

register write (flowlet id, ingress metadata.flowlet map index,

ingress metadata.flowlet id);

?

1

0)

0,

Heavy-Hitter Detection (HHD)

Heavy hitters (a.k.a elephant flows)

— A small number of flows (hundreds or thousands) contribute most network traffic
— Often transient, hard to proactively install counters

— Major source of network congestion

— Penalize delay-sensitive mice flows

Instant HHD in switch dataplane

— Detect every millisecond

— Useful in DC networks with small RTT and shallow buffer
— Counting, detection, reaction all at line-rate, in dataplane

Heavy-Hitter Detection with count-min sketch

Probabilistic data structure: counting Bloom filter

Counting
— Each flow computes multiple hash indices, adding packet size to the indexed locations

of counter array
— Flows can hash-collide, adding to a common counter instance

f1 f2

+100 +200
“ 100 n 100 “ 300 nn 200 200
Detection

— Take minimum of the counter values and compare to threshold

Reaction
— Dynamic de-prioritization, metering, etc

32

HHD. p4 (two hash-way example)

/* data structure */
register counter arrayl ({

width : 32;
instance_count : 2048;
}
register counter array2 { ... }

/* hash input fields */

field 1list 13 hash fields {
ipv4.srcAddr;
ipv4d.dstAddr;
ipvd.protocol;
tcp.srcPort;
tcp.dstPort;

/* hash functions */

field list_calculation hashl {
input { 13 hash fields; }
algorithm : crcl6;
output width : 11; // 11=log2 (2048)

}

field list_calculation hash2 ({ } // different algoritm

/* metadata variables */
header type hhd metadata t {

fields ({
indexl : 11;
index2 : 11;

count vall: 32;
count val2: 32;

}
metadata hhd metadata t md;

/* counting: counter read/update/write */
action countl() {
/* compute hash index into md.indexl */
modify field with hash based offset (
md.index1, 0, hashl, 11);
register read(md.count _vall, counter arrayl, md.indexl);
add to field (md.count vall, ipvéd.len) ;
register write (counter arrayl, md.indexl, md.count vall);
}
action count2() { ... }
action count all() {
countl () ;

count2 () ;

e

HHD.p4

/* table to run action */

table counting table {
actions { count all; }
size : 1;

/* control function */
control ingress {
apply (counting table) ;

/* detection & reaction */

/* if every count val 1is larger than threshold, deprioritize

if (md.count vall > THRESHOLD and md.count val2 > THRESHOLD)
apply (deprioritization table) ;

*/
{

34

Key-Value Stores in P4

* SwitchKV: Key-value load-balancerand cache (e.g. for memcache)
[NSDI 2016]

* Paxos in P4: Paxos leadership election algorithm
[ACM CCR 2016]

User-programmable
Software Switches

A few choices

* Hand-coded C in user-space or kernel
e eBPF in kernel

e User space C with DPDK

* P4 compiled to user-space or kernel

Converged approach: P4-eBPF and eBPF-P4 cross compilers

PISCES: Protocol Independent Software Switch

Mohammad Shahbaz, Sean Choi, Jen Rexford, Nick Feamster, Ben Pfaff, NM
Sigcomm 2016

Problem: Adding new protocol feature to OVSis complicated

* Requires domain expertizein kernel programmingand networking
 Many modules affected

* Long QA and deployment cycle: typically 9 months

Approach: Specify forwarding behavior in P4; compile to modify OVS

Question: How does the PISCES switch performance compare to OVS?

Native OVS expressed in P4

Routing

route
Match: ip.dst
Action: nexthop
drop
v
VtAN I"gTeSS MAC Routable Switching
o Learning h h Match th.dst
; Match: eth.src atch: eth.ds
Match: t > >
e i;gzes;gpor Match: eth.src eth.dst vlan.vid
Action: add_vlan Action: learn vlan.vid Action: forward
no_op Action: no_op bcast

no_op

A 4

ACL

Match: ip.src,ip.dst
ip.prtcl,

port.src,port.dst

Action: no_op
drop

A4

VLAN Egress
Processing

Match: egress_port
vlan.vid
Action: remove_vlan
no_op

Complexity Comparison

LOC Methods Method Size
Native OVS | 14,535 106 137.13
ovs.p4 341 40 8.53
Files Changed | Lines Changed
Connection Label OVS 28 41
ovs.p4 1 5
OVS 18 170
Tunnel OAM Flag ovs.pd | 6
OVS 20 370
TCP Flags ovs.p4 1 4

40x reduction in LOC
20x reduction in method size

Code mastery no longer needed

User-programmable Software Switches

1. Open-source behavioralmodeland compiler at P4.org
2. OVS: Talk by Shahbaz later today...
3. VPP: Work in progress

How to learn more about P4

C [pd.org Q%

[Work % Bookmarks

SPEC CODE NEWS JOINUS BLOG

| N .
BOARD MEMBERS

hree Board Members oversee the consortium:

A

Nick McKeown Jennifer Rexford Amin Vahdat

Stanford University Princeton University Google

P aTTOW ETWOT K ETTEITEE O arge EWaV =

switches process packets after they are deployed.

O TRY IT s

P4.org — P4 Language Consortium

® o / P1pPa x\\i\
€« C [pdorg @ v
i3 Apps [Work % Bookmarks ("]

SPEC | CODE NEWS ' JOINUS

Developers Day on \| Open for free to any individual or
Tutorials at conferen organization
Annual P4 Workshog

Boot camps for PhD students

Field Reconfigurable il ;’Zi’éiisiné) ;

P4 allows network engineers to change the way their
switches process packets after they are deployed.

R

P4.org Members

Original P4 Paper Authors:

BAREFCOT

PRINCETON
UNIVERSITY

a8 Microsoft) Stanford

Google

Operators/
End Users

Systems

Targets

Solutions/
Services

Academia/
Research

.....
Baiéb&aE
COMCAST

Alibab‘a Group

a5 Microsoft . Tencent iR

SK telecom

ot

HewlettPackard S’/ Inventec Juniper hb MNoviFlow

SDN made smarter

& atat GOOSIQ

BrocaDe® ‘""" K comsa D/#HGC

R
HIEZcHIP

AEP""NY)C

Moving the Clodd at the Speed of Light=

& cavium
© BROADCOM

gg PLUMgrid
H@lﬂﬂlll
ITECH

PRINCETON
UNIVERSITY

B BAREFCO:T
5 >~ freescale

& XILINX

O centes

vmware

SDODNLAB

FIiEM B IHHK

FLOW

RESEARCH

& I

UFRGS @ VirginiaTech

Invent the Future®

> & LA
Az 38 AY
National Chiao Tung University

<‘L) E6tvds Lorand

POLITECNICO Stanford

Five things on the horizon for

Separation of language
G from architecture

Reference architectures for
nortability

Extend P4 to express packet
scheduling and QoS disciplines

Extend P4 to express stateful
processing

e Cross-compilers to-from BPF

A long-term aspiration

Declared network forwarding behavior

Automatically partition
and generate code

P4
code

P4
code

P4
code

P4
code

P4
code

P4
code

P4
code

P4 Compiler

)

Thank you

