
Mininet and Open vSwitch
Open vSwitch Fall Conference

November 16, 2015

Bob Lantz
Open Networking Laboratory

Mininet and Open vSwitch

Development Platform for SDN
Processes in Namespaces
Mininet Demo and API
Experiences with Open vSwitch

A Development Platform for OpenFlow/SDN

Host Switch

Network OS

Switch

Switch Host

Host

Hardware Network

SDN App

Developer Laptop

App App

mn
> h1 ping h2

Network OS

SDN App

Mininet and Open vSwitch

Development Platform for SDN
Processes in Namespaces
Mininet Demo and API
Experiences with Open vSwitch

To start with,
a Very Simple (legacy) Network

Host Switch Host

firefox httpd

Root Namespace

Mechanism: Processes in Network
Namespaces

Network Namespace 1

firefox

veth1

eth0

veth2

Network Namespace 2

httpd

eth0eth0

Software Switch
(Open vSwitch)

:)

virtual Ethernet pairs

10.0.0.1 10.0.0.2

SDN version using Linux commands
sudo bash

Create host namespaces

ip netns add h1

ip netns add h2

Create switch

ovs-vsctl add-br s1

Create links

ip link add h1-eth0 type veth peer name s1-eth1

ip link add h2-eth0 type veth peer name s1-eth2

ip link show

Move host ports into namespaces

ip link set h1-eth0 netns h1

ip link set h2-eth0 netns h2

ip netns exec h1 ip link show

ip netns exec h2 ip link show

Connect switch ports to OVS

ovs-vsctl add-port s1 s1-eth1

ovs-vsctl add-port s1 s1-eth2

ovs-vsctl show

Set up OpenFlow controller

ovs-vsctl set-controller s1 tcp:127.0.0.1

controller ptcp: &

ovs-vsctl show

Configure network

ip netns exec h1 ifconfig h1-eth0 10.1

ip netns exec h1 ifconfig lo up

ip netns exec h2 ifconfig h2-eth0 10.2

ip netns exec h1 ifconfig lo up

ifconfig s1-eth1 up

ifconfig s1-eth2 up

Test network

ip netns exec h1 ping -c1 10.2

s1

h1

10.0.0.1

h2

10.0.0.2

ctrl’er

Wouldn’t it be great if...

We had a simple command-line tool and/or API
that did this for us automatically?

It allowed us to easily create topologies of
varying size, up to hundreds of nodes, and run
tests on them?

It was already included in Debian and Ubuntu?

Mininet and Open vSwitch

Development Platform for SDN
Processes in Namespaces
Mininet Demo and API
Experiences with Open vSwitch

Mininet command line tool and CLI
demo

mn

mn --topo tree,depth=3,fanout=3 --
link=tc,bw=10
mininet> xterm h1 h2

h1# wireshark &

h2# python -m SimpleHTTPServer 80 &

h1# firefox &

mn --topo linear,100

examples/miniedit.py

Mininet GUI (MiniEdit)
(unfortunately omitted from live presentation!)

Mininet's Python API

Core of Mininet!! Everything is built on it.
Dynamic Python >> static JSON/XML/etc.
Easy and (hopefully) fun
Python is used for orchestration, but emulation
is performed by compiled C code (Linux +
switches + apps)
api.mininet.org
docs.mininet.org
Introduction to Mininet

http://api.mininet.org
http://api.mininet.org
http://docs.mininet.org
http://docs.mininet.org
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

Mininet API basics
net = Mininet() # net is a Mininet() object

h1 = net.addHost('h1') # h1 is a Host() object

h2 = net.addHost('h2') # h2 is a Host()

s1 = net.addSwitch('s1') # s1 is a Switch() object

c0 = net.addController('c0') # c0 is a Controller()

net.addLink(h1, s1) # creates a Link() object

net.addLink(h2, s1)

net.start()

h2.cmd('python -m SimpleHTTPServer 80 &')

sleep(2)

h1.cmd('curl', h2.IP())

CLI(net)

h2.cmd('kill %python')

net.stop()

s1

h1

10.0.0.1

h2

10.0.0.2

c0

Performance modeling in Mininet
Use performance-modeling link and host classes

net = Mininet(link=TCLink, host=CPULimitedHost)

Limit link bandwidth and add delay

net.addLink(h2, s1, bw=10, delay='50ms')

Limit CPU bandwidth

net.addHost('h1', cpu=.2)

examples:

reproducingnetworkresearch.wordpress.com

s1

h1

10.0.0.1
20% of CPU

h2

10.0.0.2

controller

10 Mbps, 50 ms

http://reproducingnetworkresearch.wordpress.com
http://reproducingnetworkresearch.wordpress.com

Mininet and Open vSwitch

Development Platform for SDN
Processes in Namespaces
Mininet Demo and API
Experiences with Open vSwitch

Experience with OvS and Mininet

Network emulation is an incredibly useful
application of Open vSwitch!

Mininet + Open vSwitch gives you an instant
network on your laptop, for development,
testing, research, demos, experimentation...
almost anything you can think of!

Experience with OvS and Mininet
Initially, poorer startup and switching performance than Stanford reference
switch (I miss the reference kernel switch!)

Switching performance has improved over time by a factor of 30+

Inclusion in the Linux kernel was a major coup!

Startup performance is still slow due to ovsdb

OVS patch links do provide better performance and faster startup at the
expense of losing tcpdump capability and bandwidth limiting using tc.

Even batching ovsdb commands, it is still slow to create large networks
with hundreds/thousands of switches/ports.

Both OvS and Mininet want to use tc.

How can OvS evolve to improve
support for network emulation?
Scaling to thousands of virtual switches (many thousands of ports!) on a
single Linux kernel. (Also long chains of patch links.)

Supporting configuration of flow tables (size, match/action support) and flow
pipeline on individual switches (P4 may help, though it's overkill.)

Even better performance of true OpenFlow switching (closer to memory
bandwidth and to netmap/VALE's reported performance)

Accurate switch port characteristics reporting from Linux, OpenFlow
(currently everything is reported as 10 Gb/s)

Tracking OpenFlow (and possibly P4) is essential for enabling the future of
networking, including network OS development and network applications
(compare with smartphone revolution.)

Can OvS do all this today? If not, how can we get there?

Thank you

mininet.org

github.com/mininet

reproducingnetworkresearch.wordpress.com

http://mininet.org
http://mininet.org
https://github.com/mininet
https://github.com/mininet
https://github.com/mininet
https://github.com/mininet
http://reproducingnetworkresearch.wordpress.com
http://reproducingnetworkresearch.wordpress.com

