
OVS: accelerating the
datapath through

netmap/VALE

Luigi Rizzo
Universita` di Pisa, Italy

http://info.iet.unipi.it/~luigi/

(SW) Data plane performance

Depends on many components

● basic I/O costs (hw or virtual)
● flow table performance
● packet size
● traffic patterns
● hypervisor’s datapath

http://info.iet.unipi.it/~luigi/

Talk overview

● background on netmap/VALE
● integration with OVS (user and kernel dataplanes)
● hypervisor and guest datapaths
● future work

http://info.iet.unipi.it/~luigi/

Device I/O

Expensive even on bare metal
● at least with standard device drivers
● DPDK, netmap, packetshader, PF_RING/DNA show

that we can go fast
● netmap shows we only need minimal driver changes

What are the options for virtual ports and VMs ?
● tap is slow (one packet per transaction)
● shared memory for efficient data transfer

(protection ?)
● batching for efficient signaling

http://info.iet.unipi.it/~luigi/

Netmap goals and history

Build a fast path between NIC and applications
● targeted to raw packet I/O
● robust, easy to use, device independent
● use the OS for what it is good at

Evolution
● jun. 2011: first prototype and FreeBSD release
● feb. 2012: linux release
● jun. 2012: VALE (virtual software switch)
● jan. 2013: Qemu extensions
● dec. 2013: netmap pipes
● apr. 2014: bhyve support

http://info.iet.unipi.it/~luigi/

Netmap + VALE + netmap pipes

Core netmap code available at

code.google.com/p/netmap
● in-tree for FreeBSD 9, 10 and HEAD
● out-of-tree kernel module for linux 2.6.32 and above
Applications (both from us and from third parties):
● netmap-ipfw (userspace ipfw/dummynet)
● netmap-libpcap (-> usable by libpcap apps)
● netmap-click (-> usable by Click apps)
● qemu, Xen, bhyve support
Public repositories at

code.google.com/p/netmap-*

http://info.iet.unipi.it/~luigi/

Netmap design principles

Key problem:
cut down per-packet processing costs

Amortize -> batching
Remove -> preallocation, mmap
Reduce -> one flat packet format

http://info.iet.unipi.it/~luigi/

shared data structures: netmap port

Data structures

protected kernel resources

(Similar for netmap, dpdk, PF_RING/DNA)

http://info.iet.unipi.it/~luigi/

Netmap NIC access

hw + driver

network
stack

user process

hw + driver
EMULATED

fd = open(“/dev/netmap”);
ioctl(fd, NIOCREGIF, “netmap:eth0”);
mmap()

ioctl(), select(), poll(), epoll(), kevent()

200-250 ns/pkt

http://info.iet.unipi.it/~luigi/

Native NIC access

hw + driver

network
stack

user process

hw + driver

NATIVE

fd = open(“/dev/netmap”);
ioctl(fd, NIOCREGIF, “netmap:eth0”);
mmap()

ioctl(), select(), poll(), epoll(), kevent()

~20 ns/pkt

HW: 67.2 ns/pkt
or worse

http://info.iet.unipi.it/~luigi/

DPDK NIC access

hw

network
stack

user process

hw + driver

<init sequence>

busy-wait for I/O

~20 ns/pkt

HW: 67.2 ns/pkt
or worse

http://info.iet.unipi.it/~luigi/

VALE switch

hw + driver

network
stack

user process

hw + driver

VALE switch

TX: 50 ns/pkt
RX: 20 ns/pkt

http://info.iet.unipi.it/~luigi/

VALE switch + NIC/host

hw + driver

network
stack

user process

hw + driver

VALE switch

TX: 50 ns/pkt
RX: 20 ns/pkt

http://info.iet.unipi.it/~luigi/

Custom logic, VALE dataplane

hw + driver

network
stack

user process

hw + driver
NATIVE

VALE switch

fn = ovs()
fn = port_demux()
fn = my_fn()

http://info.iet.unipi.it/~luigi/

Netmap pipes

hw + driver

network
stack

hw + driver

VALE switch

TX: 50 ns/pkt
RX: 20 ns/pkt

8-10 ns/pkt
blocking

http://info.iet.unipi.it/~luigi/

Performance

(single core, best case, large batches, aligned packets, ...)

Basic I/O (netmap in OR out, device): 20 ns/pkt
● many NICs cannot do line rate due to their own hw

limitations
● PCIe bus accesses also problematic with strange

lengths or unaligned packets
VALE switch (one data copy) 50..250 ns/pkt
● 20 Mpps 64 bytes, 4 Mpps/50 Gbit/s 1500 bytes
● scales to memory bandwidth with multiple senders
netmap pipes (zero copy) 8-10 ns/pkt
● mostly insensitive to packet size

http://info.iet.unipi.it/~luigi/

OVS and netmap: userspace

Userspace datapath (2011)
● create PCAP port type for the userspace datapath
● add an extra thread for the event loop
● exploit batching
● use pcap-over-netmap for I/O

Throughput up to ~3 Mpps (NIC to NIC)

http://info.iet.unipi.it/~luigi/

OVS and netmap: kernel

In-kernel datapath (2013)
● use VALE as as a dataplane
● replace the lookup function with

 ovs_vport_receive(vport, skb);

Throughput up to 3 Mpps (NIC to NIC)

Much room improvement:
● reduce wrapping costs
● batching in ovs_dp_process_received_packet()

http://info.iet.unipi.it/~luigi/

OVS logic, VALE dataplane

hw + driver

network
stack

user process

hw + driver
NATIVE

VALE switch

fn=ovs_vport_receive()

http://info.iet.unipi.it/~luigi/

Network datapath for VMs

Speed depends on the slowest component

● paravirtualized drivers (even
a simple e1000 is fast)

● frontend/backend speedups
● replace tap with faster APIs

Common tricks:
● batching (“more flag”, 2012)
● amortize exits
● fewer copies

http://info.iet.unipi.it/~luigi/

Paravirtualized drivers

● notifications sent through shared memory
● host thread polls device status
● mechanism to start/stop polling threads

http://info.iet.unipi.it/~luigi/

Paravirtualized drivers

How useful is the I/O thread ?
reduce exits
● large speedups (2-5x)
● can be done in other ways:

send-combining, interrupt moderation
(non-pv e1000 with moderation +SC as fast as virtio)

remove exits
● up to an additional 2x speedup
● requires matching speed in producer and consumer

guest app ↔ frontend ↔ backend ↔ switch ↔ ...

http://info.iet.unipi.it/~luigi/

Batching is key for performance

If possible, extend APIs to support batching
● reasonably feasible in the input path

otherwise, infer from actual traffic
● use pending interrupts or signals as hints

(send combining)
● in late 2012 we proposed a qemu flag,

QEMU_NET_PACKET_FLAG_MORE

http://info.iet.unipi.it/~luigi/

Example: qemu

http://info.iet.unipi.it/~luigi/

Hypervisor netmap support

(single core, best case, large batches, aligned packets, ...)
QEMU: up to 6-8 Mpps G-G, 12 Mpps G-H
● basic netmap support in-tree (3-4 Mpps)
● more flag, PV netmap in guest, indirect buffers not

committed yet
bhyve: ~8 Mpps G-H
● full netmap and virtio support
Xen: 6-10 Mpps G-H
● first approach, replace xen rings with VALE
● current approach: netmap extension for

netfront/netback
● use VALE in DOM0

http://info.iet.unipi.it/~luigi/

Future work

Passthrough mode for netmap
● zero overhead data transfer
● signalling still goes through the hypervisor
Encapsulations and offloadings
● TSO already available
● others will be added as needed
Upstreaming

http://info.iet.unipi.it/~luigi/

Acknowledgements

Funding and support (over time):
Intel Research, EU FP7 (Change, Openlab), ACM,
Netapp, NEC, Cisco, Verisign

Developers:
Luigi Rizzo, Giuseppe Lettieri, Michio Honda,
Matteo Landi, Gaetano Catalli, Vincenzo Maffione,
Stefano Garzarella, Joao Martins

