
ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

NAME
ovn-sb − OVN_Southbound database schema

This database holds logical and physical configuration and state for the Open Virtual Network (OVN) sys-
tem to support virtual network abstraction. For an introduction to OVN, please seeovn−architecture(7).

The OVN Southbound database sits at the center of the OVN architecture. It is the one component that
speaks both southbound directly to all the hypervisors and gateways, via ovn−controller /ovn−con-
troller−vtep , and northbound to the Cloud Management System, viaovn−northd :

Database Structure
The OVN Southbound database contains classes of data with different properties, as described in the sec-
tions below.

Physical network

Physical network tables contain information about the chassis nodes in the system. This contains all the
information necessary to wire the overlay, such as IP addresses, supported tunnel types, and security keys.

The amount of physical network data is small (O(n) in the number of chassis) and it changes infrequently,
so it can be replicated to every chassis.

TheChassisandEncap tables are the physical network tables.

Logical Network

Logical network tables contain the topology of logical switches and routers, ACLs, firewall rules, and
ev erything needed to describe how packets traverse a logical network, represented as logical datapath flows
(see Logical Datapath Flows, below).

Logical network data may be large (O(n) in the number of logical ports, ACL rules, etc.). Thus, to improve
scaling, each chassis should receive only data related to logical networks in which that chassis participates.

The logical network data is ultimately controlled by the cloud management system (CMS) running north-
bound of OVN. That CMS determines the entire OVN logical configuration and therefore the logical net-
work data at any giv en time is a deterministic function of the CMS’s configuration, although that happens
indirectly via theOVN_Northbound database andovn−northd .

Logical network data is likely to change more quickly than physical network data. This is especially true in
a container environment where containers are created and destroyed (and therefore added to and deleted
from logical switches) quickly.

The Logical_Flow, Multicast_Group , Address_Group, DHCP_Options, DHCPv6_Options, and DNS
tables contain logical network data.

Logical-physical bindings

These tables link logical and physical components. They show the current placement of logical components
(such as VMs and VIFs) onto chassis, and map logical entities to the values that represent them in tunnel
encapsulations.

These tables change frequently, at least every time a VM powers up or down or migrates, and especially
quickly in a container environment. The amount of data per VM (or VIF) is small.

Each chassis is authoritative about the VMs and VIFs that it hosts at any giv en time and can efficiently
flood that state to a central location, so the consistency needs are minimal.

ThePort_Binding andDatapath_Binding tables contain binding data.

MAC bindings

TheMAC_Binding table tracks the bindings from IP addresses to Ethernet addresses that are dynamically
discovered using ARP (for IPv4) and neighbor discovery (for IPv6). Usually, IP-to-MAC bindings for vir-
tual machines are statically populated into thePort_Binding table, soMAC_Binding is primarily used to
discover bindings on physical networks.

Open vSwitch 2.8.90 DB Schema 1.15.0 1

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Common Columns
Some tables contain a special column namedexternal_ids. This column has the same form and purpose
each place that it appears, so we describe it here to save space later.

external_ids: map of string-string pairs
Ke y-value pairs for use by the software that manages the OVN Southbound database
rather than byovn−controller /ovn−controller−vtep. In particular,ovn−northd can use
key-value pairs in this column to relate entities in the southbound database to higher-level
entities (such as entities in the OVN Northbound database). Individual key-value pairs in
this column may be documented in some cases to aid in understanding and troubleshoot-
ing, but the reader should not mistake such documentation as comprehensive.

TABLE SUMMARY
The following list summarizes the purpose of each of the tables in theOVN_Southbounddatabase. Each
table is described in more detail on a later page.

Table Purpose
SB_Global Southbound configuration
Chassis Physical Network Hypervisor and Gateway Information
Encap Encapsulation Types
Address_Set Address Sets
Logical_Flow Logical Network Flows
Multicast_Group

Logical Port Multicast Groups
Datapath_Binding

Physical-Logical Datapath Bindings
Port_Binding Physical-Logical Port Bindings
MAC_Binding IP to MAC bindings
DHCP_Options

DHCP Options supported by native OVN DHCP
DHCPv6_Options

DHCPv6 Options supported by native OVN DHCPv6
Connection OVSDB client connections.
SSL SSL configuration.
DNS Native DNS resolution
RBAC_Role RBAC_Role configuration.
RBAC_Permission

RBAC_Permission configuration.
Gateway_Chassis

Gateway_Chassis configuration.

Open vSwitch 2.8.90 DB Schema 1.15.0 2

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

TABLE RELATIONSHIPS
The following diagram shows the relationship among tables in the database. Each node represents a table.
Tables that are part of the ‘‘root set’’ are shown with double borders. Each edge leads from the table that
contains it and points to the table that its value represents. Edges are labeled with their column names, fol-
lowed by a constraint on the number of allowed values:? for zero or one,* for zero or more,+ for one or
more. Thicklines represent strong references; thin lines represent weak references.

Address_Set

Gateway_Chassis

Chassis Encap

Multicast_Group
Port_Binding

Datapath_Binding

RBAC_Permission

SB_Global

Connection

SSL

Logical_Flow

MAC_Binding

RBAC_Role

DNS

DHCPv6_Options

DHCP_Options

chassis?
encaps+

ports+

datapath

gateway_chassis*

chassis?

datapath

connections*

ssl?

logical_datapath

datapath

permissions value*

datapaths+

Open vSwitch 2.8.90 DB Schema 1.15.0 3

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

SB_Global TABLE
Southbound configuration for an OVN system. This table must have exactly one row.

Summary:
Status:

nb_cfg integer
Common Columns:

external_ids map of string-string pairs
Connection Options:

connections set ofConnections
ssl optionalSSL

Details:
Status:

This column allow a client to track the overall configuration state of the system.

nb_cfg: integer
Sequence number for the configuration. When a CMS orovn−nbctl updates the northbound data-
base, it increments thenb_cfg column in theNB_Global table in the northbound database. In turn,
whenovn−northd updates the southbound database to bring it up to date with these changes, it
updates this column to the same value.

Common Columns:

external_ids: map of string-string pairs
SeeExternal IDs at the beginning of this document.

Connection Options:

connections: set ofConnections
Database clients to which the Open vSwitch database server should connect or on which it should
listen, along with options for how these connections should be configured. See theConnection ta-
ble for more information.

ssl: optionalSSL
Global SSL configuration.

Open vSwitch 2.8.90 DB Schema 1.15.0 4

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Chassis TABLE
Each row in this table represents a hypervisor or gateway (a chassis) in the physical network. Each chassis,
via ovn−controller /ovn−controller−vtep, adds and updates its own row, and keeps a copy of the remaining
rows to determine how to reach other hypervisors.

When a chassis shuts down gracefully, it should remove its own row. (This is not critical because resources
hosted on the chassis are equally unreachable regardless of whether the row is present.) If a chassis shuts
down permanently without removing its row, some kind of manual or automatic cleanup is eventually
needed; we can devise a process for that as necessary.

Summary:
name string (must be unique within table)
hostname string
nb_cfg integer
external_ids : ovn-bridge-mappings optional string
external_ids : datapath-type optional string
external_ids : iface-types optional string
Common Columns:

external_ids map of string-string pairs
Encapsulation Configuration:

encaps set of 1 or moreEncaps
Gateway Configuration:

vtep_logical_switches set of strings

Details:
name: string (must be unique within table)

OVN does not prescribe a particular format for chassis names. ovn-controller populates this col-
umn usingexternal_ids:system-id in the Open_vSwitch database’s Open_vSwitch table. ovn-
controller-vtep populates this column withname in the hardware_vtep database’s Physi-
cal_Switchtable.

hostname: string
The hostname of the chassis, if applicable. ovn-controller will populate this column with the host-
name of the host it is running on. ovn-controller-vtep will leave this column empty.

nb_cfg: integer
Sequence number for the configuration. Whenovn−controller updates the configuration of a chas-
sis from the contents of the southbound database, it copiesnb_cfg from theSB_Global table into
this column.

external_ids : ovn-bridge-mappings: optional string
ovn−controller populates this key with the set of bridge mappings it has been configured to use.
Other applications should treat this key as read-only. Seeovn−controller(8) for more information.

external_ids : datapath-type: optional string
ovn−controller populates this key with the datapath type configured in thedatapath_typecolumn
of the Open_vSwitch database’s Bridge table. Other applications should treat this key as read-
only. Seeovn−controller(8) for more information.

external_ids : iface-types: optional string
ovn−controller populates this key with the interface types configured in theiface_typescolumn
of the Open_vSwitch database’s Open_vSwitch table. Other applications should treat this key as
read-only. Seeovn−controller(8) for more information.

Common Columns:

The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

Open vSwitch 2.8.90 DB Schema 1.15.0 5

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

external_ids: map of string-string pairs

Encapsulation Configuration:

OVN uses encapsulation to transmit logical dataplane packets between chassis.

encaps: set of 1 or moreEncaps
Points to supported encapsulation configurations to transmit logical dataplane packets to this chas-
sis. Each entry is aEncap record that describes the configuration.

Gateway Configuration:

A gatewayis a chassis that forwards traffic between the OVN-managed part of a logical network and a
physical VLAN, extending a tunnel-based logical network into a physical network. Gateways are typically
dedicated nodes that do not host VMs and will be controlled byovn−controller−vtep.

vtep_logical_switches: set of strings
Stores all VTEP logical switch names connected by this gateway chassis. ThePort_Binding table
entry withoptions:vtep−physical−switchequalChassis name, and options:vtep−logical−switch
value inChassis vtep_logical_switches, will be associated with thisChassis.

Open vSwitch 2.8.90 DB Schema 1.15.0 6

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Encap TABLE
Theencapscolumn in theChassistable refers to rows in this table to identify how OVN may transmit logi-
cal dataplane packets to this chassis. Each chassis, viaovn−controller(8) orovn−controller−vtep(8), adds
and updates its own rows and keeps a copy of the remaining rows to determine how to reach other chassis.

Summary:
type string, one ofgeneve, stt, or vxlan
options map of string-string pairs
ip string
chassis_name string

Details:
type: string, one ofgeneve, stt, or vxlan

The encapsulation to use to transmit packets to this chassis. Hypervisors must use eithergeneve or
stt. Gateways may usevxlan, geneve, or stt.

options: map of string-string pairs
Options for configuring the encapsulation. Currently, the only option that has been defined is
csum.

csum indicates that encapsulation checksums can be transmitted and received with reasonable per-
formance. It is a hint to senders transmitting data to this chassis that they should use checksums to
protect OVN metadata.ovn−controller populates this key with the value defined inexter-
nal_ids:ovn-encap-csumcolumn of the Open_vSwitch database’s Open_vSwitch table. Other
applications should treat this key as read-only. Seeovn−controller(8) for more information.

In terms of performance, this actually significantly increases throughput in most common cases
when running on Linux based hosts without NICs supporting encapsulation hardware offload
(around 60% for bulk traffic). The reason is that generally all NICs are capable of offloading trans-
mitted and received TCP/UDP checksums (viewed as ordinary data packets and not as tunnels).
The benefit comes on the receive side where the validated outer checksum can be used to addition-
ally validate an inner checksum (such as TCP), which in turn allows aggregation of packets to be
more efficiently handled by the rest of the stack.

Not all devices see such a benefit. The most notable exception is hardware VTEPs. These devices
are designed to not buffer entire packets in their switching engines and are therefore unable to effi-
ciently compute or validate full packet checksums. In addition certain versions of the Linux kernel
are not able to fully take advantage of encapsulation NIC offloads in the presence of checksums.
(This is actually a pretty narrow corner case though - earlier versions of Linux don’t support
encapsulation offloads at all and later versions support both offloads and checksums well.)

csumdefaults tofalsefor hardware VTEPs andtrue for all other cases.

ip: string
The IPv4 address of the encapsulation tunnel endpoint.

chassis_name: string
The name of the chassis that created this encap.

Open vSwitch 2.8.90 DB Schema 1.15.0 7

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Address_Set TABLE
See the documentation for theAddress_Settable in theOVN_Northbound database for details.

Summary:
name string (must be unique within table)
addresses set of strings

Details:
name: string (must be unique within table)

addresses: set of strings

Open vSwitch 2.8.90 DB Schema 1.15.0 8

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Logical_Flow TABLE
Each row in this table represents one logical flow. ovn−northd populates this table with logical flows that
implement the L2 and L3 topologies specified in theOVN_Northbound database. Each hypervisor, via
ovn−controller , translates the logical flows into OpenFlow flows specific to its hypervisor and installs them
into Open vSwitch.

Logical flows are expressed in an OVN-specific format, described here. A logical datapath flow is much
like an OpenFlow flow, except that the flows are written in terms of logical ports and logical datapaths
instead of physical ports and physical datapaths. Translation between logical and physical flows helps to
ensure isolation between logical datapaths. (The logical flow abstraction also allows the OVN centralized
components to do less work, since they do not have to separately compute and push out physical flows to
each chassis.)

The default action when no flow matches is to drop packets.

Architectural Logical Life Cycle of a Packet

This following description focuses on the life cycle of a packet through a logical datapath, ignoring physi-
cal details of the implementation. Please refer toAr chitectural Physical Life Cycle of a Packet in
ovn−architecture(7) for the physical information.

The description here is written as if OVN itself executes these steps, but in fact OVN (that is,ovn−con-
troller) programs Open vSwitch, via OpenFlow and OVSDB, to execute them on its behalf.

At a high level, OVN passes each packet through the logical datapath’s logical ingress pipeline, which may
output the packet to one or more logical port or logical multicast groups. For each such logical output port,
OVN passes the packet through the datapath’s logical egress pipeline, which may either drop the packet or
deliver it to the destination. Between the two pipelines, outputs to logical multicast groups are expanded
into logical ports, so that the egress pipeline only processes a single logical output port at a time. Between
the two pipelines is also where, when necessary, OVN encapsulates a packet in a tunnel (or tunnels) to
transmit to remote hypervisors.

In more detail, to start, OVN searches theLogical_Flow table for a row with correctlogical_datapath, a
pipeline of ingress, a table_id of 0, and amatch that is true for the packet. If none is found, OVN drops
the packet. If OVN finds more than one, it chooses the match with the highestpriority . Then OVN exe-
cutes each of the actions specified in the row’s actions column, in the order specified. Some actions, such
as those to modify packet headers, require no further details. Thenext andoutput actions are special.

Thenext action causes the above process to be repeated recursively, except that OVN searches fortable_id
of 1 instead of 0. Similarly, any next action in a row found in that table would cause a further search for a
table_id of 2, and so on. When recursive processing completes, flow control returns to the action following
next.

The output action also introduces recursion. Its effect depends on the current value of theoutport field.
Supposeoutport designates a logical port. First, OVN comparesinport to outport ; if they are equal, it
treats theoutput as a no-op by default. In the common case, where they are different, the packet enters the
egress pipeline. This transition to the egress pipeline discards register data, e.g.reg0 ... reg9 and connection
tracking state, to achieve uniform behavior regardless of whether the egress pipeline is on a different hyper-
visor (because registers aren’t preserve across tunnel encapsulation).

To execute the egress pipeline, OVN again searches theLogical_Flow table for a row with correctlogi-
cal_datapath, a table_id of 0, amatch that is true for the packet, but now looking for apipeline of egress.
If no matching row is found, the output becomes a no-op. Otherwise, OVN executes the actions for the
matching flow (which is chosen from multiple, if necessary, as already described).

In the egresspipeline, thenext action acts as already described, except that it, of course, searches for
egressflows. Theoutput action, however, now directly outputs the packet to the output port (which is now
fixed, becauseoutport is read-only within the egress pipeline).

The description earlier assumed thatoutport referred to a logical port. If it instead designates a logical
multicast group, then the description above still applies, with the addition of fan-out from the logical multi-
cast group to each logical port in the group. For each member of the group, OVN executes the logical

Open vSwitch 2.8.90 DB Schema 1.15.0 9

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

pipeline as described, with the logical output port replaced by the group member.

Pipeline Stages

ovn−northd populates theLogical_Flow table with the logical flows described in detail inovn−northd(8).

Summary:
logical_datapath Datapath_Binding
pipeline string, eitheregressor ingress
table_id integer, in range 0 to 23
priority integer, in range 0 to 65,535
match string
actions string
external_ids : stage-name optional string
external_ids : stage-hint optional string, containing an uuid
external_ids : source optional string
Common Columns:

external_ids map of string-string pairs

Details:
logical_datapath: Datapath_Binding

The logical datapath to which the logical flow belongs.

pipeline: string, eitheregressor ingress
The primary flows used for deciding on a packet’s destination are theingressflows. Theegress
flows implement ACLs. SeeLogical Life Cycle of a Packet, above, for details.

table_id: integer, in range 0 to 23
The stage in the logical pipeline, analogous to an OpenFlow table number.

priority : integer, in range 0 to 65,535
The flow’s priority. Flows with numerically higher priority take precedence over those with lower.
If two logical datapath flows with the same priority both match, then the one actually applied to
the packet is undefined.

match: string
A matching expression. OVN provides a superset of OpenFlow matching capabilities, using a syn-
tax similar to Boolean expressions in a programming language.

The most important components of match expression arecomparisonsbetweensymbolsandcon-
stants, e.g. ip4.dst == 192.168.0.1, ip.proto == 6, arp.op == 1, eth.type == 0x800. The logical
AND operator&& and logical OR operator|| can combine comparisons into a larger expression.

Matching expressions also support parentheses for grouping, the logical NOT prefix operator!,
and literals0 and1 to express ‘‘false’’ or ‘ ‘true,’’ r espectively. The latter is useful by itself as a
catch-all expression that matches every packet.

Match expressions also support a kind of function syntax. The following functions are supported:

is_chassis_resident(lport)
Evaluates to true on a chassis on which logical portlport (a quoted string) resides, and to
false elsewhere. This function was introduced in OVN 2.7.

Symbols

Type. Symbols have integer or string type. Integer symbols have awidth in bits.

Kinds. There are three kinds of symbols:

• Fields. A field symbol represents a packet header or metadata field. For example, a field
namedvlan.tci might represent the VLAN TCI field in a packet.

A field symbol can have integer or string type. Integer fields can be nominal or ordinal
(seeLevel of M easurement, below).

Open vSwitch 2.8.90 DB Schema 1.15.0 10

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

• Subfields. A subfield represents a subset of bits from a larger field. For example, a field
vlan.vid might be defined as an alias forvlan.tci[0..11]. Subfields are provided for syn-
tactic convenience, because it is always possible to instead refer to a subset of bits from a
field directly.

Only ordinal fields (seeLevel of M easurement, below) may have subfields. Subfields are
always ordinal.

• Predicates. A predicate is shorthand for a Boolean expression. Predicates may be used
much like 1-bit fields. For example,ip4 might expand toeth.type == 0x800. Predicates
are provided for syntactic convenience, because it is always possible to instead specify
the underlying expression directly.

A predicate whose expansion refers to any nominal field or predicate (seeLevel of M ea-
surement, below) is nominal; other predicates have Boolean level of measurement.

Level of M easurement. See http://en.wikipedia.org/wiki/Level_of_measurement for the statistical
concept on which this classification is based. There are three levels:

• Ordinal. In statistics, ordinal values can be ordered on a scale. OVN considers a field (or
subfield) to be ordinal if its bits can be examined individually. This is true for the Open-
Flow fields that OpenFlow or Open vSwitch makes ‘‘maskable.’’

Any use of a nominal field may specify a single bit or a range of bits, e.g.vlan.tci[13..15]
refers to the PCP field within the VLAN TCI, andeth.dst[40] refers to the multicast bit in
the Ethernet destination address.

OVN supports all the usual arithmetic relations (==, !=, <, <=, >, and >=) on ordinal
fields and their subfields, because OVN can implement these in OpenFlow and Open
vSwitch as collections of bitwise tests.

• Nominal. In statistics, nominal values cannot be usefully compared except for equality.
This is true of OpenFlow port numbers, Ethernet types, and IP protocols are examples: all
of these are just identifiers assigned arbitrarily with no deeper meaning. In OpenFlow and
Open vSwitch, bits in these fields generally aren’t individually addressable.

OVN only supports arithmetic tests for equality on nominal fields, because OpenFlow
and Open vSwitch provide no way for a flow to efficiently implement other comparisons
on them. (A test for inequality can be sort of built out of two flows with different priori-
ties, but OVN matching expressions always generate flows with a single priority.)

String fields are always nominal.

• Boolean. A nominal field that has only two values, 0 and 1, is somewhat exceptional,
since it is easy to support both equality and inequality tests on such a field: either one can
be implemented as a test for 0 or 1.

Only predicates (see above) hav ea Boolean level of measurement.

This isn’t a standard level of measurement.

Prerequisites. Any symbol can have prerequisites, which are additional condition implied by the
use of the symbol. For example, For example,icmp4.typesymbol might have prerequisiteicmp4,
which would cause an expressionicmp4.type == 0 to be interpreted asicmp4.type == 0 &&
icmp4, which would in turn expand toicmp4.type == 0 && eth.type == 0x800 && ip4.proto ==
1 (assumingicmp4 is a predicate defined as suggested underTypesabove).

Relational operators

All of the standard relational operators==, !=, <, <=, >, and >= are supported. Nominal fields sup-
port only== and !=, and only in a positive sense when outer! are taken into account, e.g. given
string field inport , inport == "eth0" and !(inport != "eth0") are acceptable, but notinport !=
"eth0" .

Open vSwitch 2.8.90 DB Schema 1.15.0 11

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

The implementation of== (or != when it is negated), is more efficient than that of the other rela-
tional operators.

Constants

Integer constants may be expressed in decimal, hexadecimal prefixed by0x, or as dotted-quad
IPv4 addresses, IPv6 addresses in their standard forms, or Ethernet addresses as colon-separated
hex digits. A constant in any of these forms may be followed by a slash and a second constant (the
mask) in the same form, to form a masked constant. IPv4 and IPv6 masks may be given as inte-
gers, to express CIDR prefixes.

String constants have the same syntax as quoted strings in JSON (thus, they are Unicode strings).

Some operators support sets of constants written inside curly braces{ ... }. Commas between ele-
ments of a set, and after the last elements, are optional. With ==, ‘‘field == { constant1, constant2,
... }’’ i s syntactic sugar for ‘‘field == constant1|| field == constant2|| Similarly, ‘‘field != { con-
stant1, constant2, ... }’’ i s equivalent to ‘‘field != constant1&& field != constant2&& ...’’ .

You may refer to a set of IPv4, IPv6, or MAC addresses stored in theAddress_Settable by its
name. An Address_Setwith a name ofset1can be referred to as$set1.

Miscellaneous

Comparisons may name the symbol or the constant first, e.g.tcp.src == 80 and80 == tcp.src are
both acceptable.

Tests for a range may be expressed using a syntax like 1024 <= tcp.src <= 49151, which is equiv-
alent to1024 <= tcp.src && t cp.src <= 49151.

For a one-bit field or predicate, a mention of its name is equivalent to symobl == 1, e.g.
vlan.present is equivalent to vlan.present == 1. The same is true for one-bit subfields, e.g.
vlan.tci[12]. There is no technical limitation to implementing the same for ordinal fields of all
widths, but the implementation is expensive enough that the syntax parser requires writing an
explicit comparison against zero to make mistakes less likely, e.g. in tcp.src != 0 the comparison
against 0 is required.

Operator precedenceis as shown below, from highest to lowest. There are two exceptions where
parentheses are required even though the table would suggest that they are not:&& and|| require
parentheses when used together, and ! requires parentheses when applied to a relational expres-
sion. Thus, in(eth.type == 0x800 || eth.type == 0x86dd) && ip.proto == 6or !(arp.op == 1),
the parentheses are mandatory.

• ()

• == != < <= > >=

• !

• && ||

Commentsmay be introduced by//, which extends to the next new-line. Comments within a line
may be bracketed by/* and*/ . Multiline comments are not supported.

Symbols

Most of the symbols below hav einteger type. Onlyinport andoutport have string type.inport
names a logical port. Thus, its value is alogical_port name from thePort_Binding table.outport
may name a logical port, asinport , or a logical multicast group defined in theMulticast_Group
table. For both symbols, only names within the flow’s logical datapath may be used.

The regX symbols are 32-bit integers. ThexxregX symbols are 128-bit integers, which overlay
four of the 32-bit registers:xxreg0 overlays reg0 throughreg3, with reg0 supplying the most-sig-
nificant bits ofxxreg0andreg3 the least-signficant.xxreg1similarly overlaysreg4 throughreg7.

• reg0...reg9

Open vSwitch 2.8.90 DB Schema 1.15.0 12

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

• xxreg0 xxreg1

• inport outport

• flags.loopback

• eth.src eth.dst eth.type

• vlan.tci vlan.vid vlan.pcp vlan.present

• ip.proto ip.dscp ip.ecn ip.ttl ip.frag

• ip4.src ip4.dst

• ip6.src ip6.dst ip6.label

• arp.op arp.spa arp.tpa arp.sha arp.tha

• tcp.src tcp.dst tcp.flags

• udp.src udp.dst

• sctp.src sctp.dst

• icmp4.type icmp4.code

• icmp6.type icmp6.code

• nd.target nd.sll nd.tll

• ct_mark ct_label

• ct_state, which has several Boolean subfields. Thect_next action initializes the follow-
ing subfields:

• ct.trk : Always set to true byct_next to indicate that connection tracking has
taken place. All otherct subfields havect.trk as a prerequisite.

• ct.new: True for a new flow

• ct.est: True for an established flow

• ct.rel: True for a related flow

• ct.rpl : True for a reply flow

• ct.inv: True for a connection entry in a bad state

Thect_dnat, ct_snat, andct_lb actions initialize the following subfields:

• ct.dnat: True for a packet whose destination IP address has been changed.

• ct.snat: True for a packet whose source IP address has been changed.

The following predicates are supported:

• eth.bcastexpands toeth.dst == ff:ff:ff:ff:ff:ff

• eth.mcastexpands toeth.dst[40]

• vlan.presentexpands tovlan.tci[12]

• ip4 expands toeth.type == 0x800

• ip4.mcastexpands toip4.dst[28..31] == 0xe

• ip6 expands toeth.type == 0x86dd

• ip expands toip4 || ip6

• icmp4 expands toip4 && ip.proto == 1

• icmp6 expands toip6 && ip.proto == 58

• icmp expands toicmp4 || icmp6

Open vSwitch 2.8.90 DB Schema 1.15.0 13

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

• ip.is_frag expands toip.frag[0]

• ip.later_frag expands toip.frag[1]

• ip.first_frag expands toip.is_frag && !ip.later_frag

• arp expands toeth.type == 0x806

• nd expands toicmp6.type == {135, 136} && icmp6.code == 0 && ip.ttl == 255

• nd_nsexpands toicmp6.type == 135 && icmp6.code == 0 && ip.ttl == 255

• nd_naexpands toicmp6.type == 136 && icmp6.code == 0 && ip.ttl == 255

• tcp expands toip.proto == 6

• udp expands toip.proto == 17

• sctpexpands toip.proto == 132

actions: string
Logical datapath actions, to be executed when the logical flow represented by this row is the high-
est-priority match.

Actions share lexical syntax with thematch column. An empty set of actions (or one that contains
just white space or comments), or a set of actions that consists of justdrop; , causes the matched
packets to be dropped. Otherwise, the column should contain a sequence of actions, each termi-
nated by a semicolon.

The following actions are defined:

output;
In the ingress pipeline, this action executes theegresspipeline as a subroutine. Ifoutport
names a logical port, the egress pipeline executes once; if it is a multicast group, the
egress pipeline runs once for each logical port in the group.

In the egress pipeline, this action performs the actual output to theoutport logical port.
(In the egress pipeline,outport never names a multicast group.)

By default, output to the input port is implicitly dropped, that is,output becomes a no-op
if outport == inport . Occasionally it may be useful to override this behavior, e.g. to send
an ARP reply to an ARP request; to do so, useflags.loopback = 1to allow the packet to
"hair-pin" back to the input port.

next;
next(table);
next(pipeline=pipeline, table=table);

Executes the given logical datapathtable in pipelineas a subroutine. The default table is
just after the current one. Ifpipeline is specified, it may beingressor egress; the default
pipeline is the one currently executing. Actions in the ingress pipeline may not usenext
to jump into the egress pipeline (use theoutput instead), but transitions in the opposite
direction are allowed.

field= constant;
Sets data or metadata fieldfield to constant valueconstant, e.g. outport = "vif0"; to set
the logical output port. To set only a subset of bits in a field, specify a subfield forfield or
a maskedconstant, e.g. one may usevlan.pcp[2] = 1; or vlan.pcp = 4/4; to set the most
sigificant bit of the VLAN PCP.

Assigning to a field with prerequisites implicitly adds those prerequisites tomatch; thus,
for example, a flow that setstcp.dst applies only to TCP flows, regardless of whether its
match mentions any TCP field.

Not all fields are modifiable (e.g.eth.type andip.proto are read-only), and not all modi-
fiable fields may be partially modified (e.g.ip.ttl must assigned as a whole). Theoutport
field is modifiable in theingresspipeline but not in theegresspipeline.

Open vSwitch 2.8.90 DB Schema 1.15.0 14

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

field1= field2;
Sets data or metadata fieldfield1 to the value of data or metadata fieldfield2, e.g. reg0 =
ip4.src; copiesip4.src into reg0. To modify only a subset of a field’s bits, specify a sub-
field for field1 or field2 or both, e.g.vlan.pcp = reg0[0..2]; copies the least-significant
bits of reg0 into the VLAN PCP.

field1andfield2must be the same type, either both string or both integer fields. If they are
both integer fields, they must have the same width.

If field1 or field2 has prerequisites, they are added implicitly tomatch. It is possible to
write an assignment with contradictory prerequisites, such asip4.src = ip6.src[0..31];,
but the contradiction means that a logical flow with such an assignment will never be
matched.

field1<−> field2;
Similar to field1 = field2; except that the two values are exchanged instead of copied.
Bothfield1andfield2must modifiable.

ip.ttl−−;
Decrements the IPv4 or IPv6 TTL. If this would make the TTL zero or negative, then
processing of the packet halts; no further actions are processed. (To properly handle such
cases, a higher-priority flow should match onip.ttl == {0, 1}; .)

Prerequisite: ip

ct_next;
Apply connection tracking to the flow, initializing ct_state for matching in later tables.
Automatically moves on to the next table, as if followed bynext.

As a side effect, IP fragments will be reassembled for matching. If a fragmented packet is
output, then it will be sent with any overlapping fragments squashed. The connection
tracking state is scoped by the logical port when the action is used in a flow for a logical
switch, so overlapping addresses may be used. To allow traffic related to the matched
flow, execute ct_commit . Connection tracking state is scoped by the logical topology
when the action is used in a flow for a router.

It is possible to have actions follow ct_next, but they will not have access to any of its
side-effects and is not generally useful.

ct_commit;
ct_commit(ct_mark=value[/mask]);
ct_commit(ct_label=value[/mask]);
ct_commit(ct_mark=value[/mask], ct_label=value[/mask]);

Commit the flow to the connection tracking entry associated with it by a previous call to
ct_next. When ct_mark=value[/mask] and/or ct_label=value[/mask] are supplied,
ct_mark and/orct_label will be set to the values indicated byvalue[/mask]on the con-
nection tracking entry. ct_mark is a 32-bit field.ct_label is a 128-bit field. The
value[/mask]should be specified in hex string if more than 64bits are to be used.

Note that if you want processing to continue in the next table, you must execute thenext
action afterct_commit. You may also leave out next which will commit connection
tracking state, and then drop the packet. This could be useful for settingct_mark on a
connection tracking entry before dropping a packet, for example.

ct_dnat;
ct_dnat(IP);

ct_dnat sends the packet through the DNAT zone in connection tracking table to unD-
NAT any packet that was DNAT ed in the opposite direction. The packet is then automati-
cally sent to to the next tables as if followed bynext; action. The next tables will see the
changes in the packet caused by the connection tracker.

Open vSwitch 2.8.90 DB Schema 1.15.0 15

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

ct_dnat(IP) sends the packet through the DNAT zone to change the destination IP
address of the packet to the one provided inside the parentheses and commits the connec-
tion. The packet is then automatically sent to the next tables as if followed bynext;
action. The next tables will see the changes in the packet caused by the connection
tracker.

ct_snat;
ct_snat(IP);

ct_snatsends the packet through the SNAT zone to unSNAT any packet that was SNAT ed
in the opposite direction. The behavior on gateway routers differs from the behavior on a
distributed router:

• On a gateway router, if the packet needs to be sent to the next tables, then it
should be followed by anext; action. The next tables will not see the changes in
the packet caused by the connection tracker.

• On a distributed router, if the connection tracker finds a connection that was
SNAT ed in the opposite direction, then the destination IP address of the packet is
UNSNAT ed. The packet is automatically sent to the next tables as if followed by
thenext; action. The next tables will see the changes in the packet caused by the
connection tracker.

ct_snat(IP) sends the packet through the SNAT zone to change the source IP address of
the packet to the one provided inside the parenthesis and commits the connection. The
packet is then automatically sent to the next tables as if followed bynext; action. The
next tables will see the changes in the packet caused by the connection tracker.

ct_clear;
Clears connection tracking state.

clone {action; ... };
Makes a copy of the packet being processed and executes eachaction on the copy.
Actions following thecloneaction, if any, apply to the original, unmodified packet. This
can be used as a way to ‘‘save and restore’’ the packet around a set of actions that may
modify it and should not persist.

arp { action; ... };
Temporarily replaces the IPv4 packet being processed by an ARP packet and executes
each nestedactionon the ARP packet. Actions following thearp action, if any, apply to
the original, unmodified packet.

The ARP packet that this action operates on is initialized based on the IPv4 packet being
processed, as follows. These are default values that the nested actions will probably want
to change:

• eth.srcunchanged

• eth.dstunchanged

• eth.type = 0x0806

• arp.op = 1(ARP request)

• arp.shacopied frometh.src

• arp.spacopied fromip4.src

• arp.tha = 00:00:00:00:00:00

• arp.tpa copied fromip4.dst

The ARP packet has the same VLAN header, if any, as the IP packet it replaces.

Prerequisite: ip4

Open vSwitch 2.8.90 DB Schema 1.15.0 16

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

get_arp(P, A);
Parameters: logical port string fieldP, 32-bit IP address fieldA.

Looks upA in P’s mac binding table. If an entry is found, stores its Ethernet address in
eth.dst, otherwise stores00:00:00:00:00:00in eth.dst.

Example: get_arp(outport, ip4.dst);

put_arp(P, A, E);
Parameters: logical port string fieldP, 32-bit IP address fieldA, 48-bit Ethernet address
field E.

Adds or updates the entry for IP addressA in logical portP’s mac binding table, setting
its Ethernet address toE.

Example: put_arp(inport, arp.spa, arp.sha);

nd_na { action; ... };
Temporarily replaces the IPv6 neighbor solicitation packet being processed by an IPv6
neighbor advertisement (NA) packet and executes each nestedaction on the NA packet.
Actions following thend_naaction, if any, apply to the original, unmodified packet.

The NA packet that this action operates on is initialized based on the IPv6 packet being
processed, as follows. These are default values that the nested actions will probably want
to change:

• eth.dstexchanged witheth.src

• eth.type = 0x86dd

• ip6.dst copied fromip6.src

• ip6.src copied fromnd.target

• icmp6.type = 136(Neighbor Advertisement)

• nd.target unchanged

• nd.sll = 00:00:00:00:00:00

• nd.tll copied frometh.dst

The ND packet has the same VLAN header, if any, as the IPv6 packet it replaces.

Prerequisite: nd_ns

get_nd(P, A);
Parameters: logical port string fieldP, 128-bit IPv6 address fieldA.

Looks upA in P’s mac binding table. If an entry is found, stores its Ethernet address in
eth.dst, otherwise stores00:00:00:00:00:00in eth.dst.

Example: get_nd(outport, ip6.dst);

put_nd(P, A, E);
Parameters: logical port string fieldP, 128-bit IPv6 address fieldA, 48-bit Ethernet
address fieldE.

Adds or updates the entry for IPv6 addressA in logical portP’s mac binding table, setting
its Ethernet address toE.

Example: put_nd(inport, nd.target, nd.tll);

R= put_dhcp_opts(D1 = V1, D2 = V2, ..., Dn = Vn);
Parameters: one or more DHCP option/value pairs, which must include anofferip
option (with code 0).

Result: stored to a 1-bit subfieldR.

Open vSwitch 2.8.90 DB Schema 1.15.0 17

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Valid only in the ingress pipeline.

When this action is applied to a DHCP request packet (DHCPDISCOVER or DHCPRE-
QUEST), it changes the packet into a DHCP reply (DHCPOFFER or DHCPACK, respec-
tively), replaces the options by those specified as parameters, and stores 1 inR.

When this action is applied to a non-DHCP packet or a DHCP packet that is not
DHCPDISCOVER or DHCPREQUEST, it leaves the packet unchanged and stores 0 inR.

The contents of theDHCP_Option table control the DHCP option names and values that
this action supports.

Example: reg0[0] = put_dhcp_opts(offerip = 10.0.0.2, router = 10.0.0.1, netmask =
255.255.255.0, dns_server = { 8.8.8.8, 7.7.7.7});

R= put_dhcpv6_opts(D1 = V1, D2 = V2, ..., Dn = Vn);
Parameters: one or more DHCPv6 option/value pairs.

Result: stored to a 1-bit subfieldR.

Valid only in the ingress pipeline.

When this action is applied to a DHCPv6 request packet, it changes the packet into a
DHCPv6 reply, replaces the options by those specified as parameters, and stores 1 inR.

When this action is applied to a non-DHCPv6 packet or an invalid DHCPv6 request
packet , it leaves the packet unchanged and stores 0 inR.

The contents of theDHCPv6_Options table control the DHCPv6 option names and val-
ues that this action supports.

Example: reg0[3] = put_dhcpv6_opts(ia_addr = aef0::4, server_id =
00:00:00:00:10:02, dns_server={ae70::1,ae70::2});

set_queue(queue_number);
Parameters: Queue numberqueue_number, in the range 0 to 61440.

This is a logical equivalent of the OpenFlow set_queueaction. It affects packets that
egress a hypervisor through a physical interface. For nonzeroqueue_number, it config-
ures packet queuing to match the settings configured for thePort_Binding with
options:qdisc_queue_idmatchingqueue_number. Whenqueue_numberis zero, it resets
queuing to the default strategy.

Example: set_queue(10);

ct_lb;
ct_lb(ip[:port]...);

With one or more arguments,ct_lb commits the packet to the connection tracking table
and DNATs the packet’s destination IP address (and port) to the IP address or addresses
(and optional ports) specified in the string. If multiple comma-separated IP addresses are
specified, each is given equal weight for picking the DNAT address. Processing automati-
cally moves on to the next table, as ifnext; were specified, and later tables act on the
packet as modified by the connection tracker. Connection tracking state is scoped by the
logical port when the action is used in a flow for a logical switch, so overlapping
addresses may be used. Connection tracking state is scoped by the logical topology when
the action is used in a flow for a router.

Without arguments,ct_lb sends the packet to the connection tracking table to NAT the
packets. If the packet is part of an established connection that was previously committed
to the connection tracker viact_lb(...), it will automatically get DNAT ed to the same IP
address as the first packet in that connection.

R= dns_lookup();
Parameters: No parameters.

Open vSwitch 2.8.90 DB Schema 1.15.0 18

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Result: stored to a 1-bit subfieldR.

Valid only in the ingress pipeline.

When this action is applied to a valid DNS request (a UDP packet typically directed to
port 53), it attempts to resolve the query using the contents of theDNS table. If it is suc-
cessful, it changes the packet into a DNS reply and stores 1 inR. If the action is applied
to a non-DNS packet, an invalid DNS request packet, or a valid DNS request for which
theDNS table does not supply an answer, it leaves the packet unchanged and stores 0 in
R.

Regardless of success, the action does not make any of the changes to the flow that are
necessary to direct the packet back to the requester. The logical pipeline can implement
this behavior with matches and actions in later tables.

Example: reg0[3] = dns_lookup();

Prerequisite: udp

log(key=value, ...);
Causesovn−controller to log the packet on the chassis that processes it. Packet logging
currently uses the same logging mechanism as other Open vSwitch and OVN messages,
which means that whether and where log messages appear depends on the local logging
configuration that can be configured withovs−appctl, etc.

The log action takes zero or more of the following key-value pair arguments that control
what is logged:

name=string
An optional name for the ACL. Thestring is currently limited to 64 bytes.

severity= level
Indicates the severity of the event. Thelevel is one of following (from more to
less serious):alert, warning, notice, info, or debug. If a severity is not pro-
vided, the default isinfo.

verdict= value
The verdict for packets matching the flow. The value must be one ofallow,
deny, or reject.

The following actions will likely be useful later, but they hav enot been thought out carefully.

icmp4 { action; ... };
Temporarily replaces the IPv4 packet being processed by an ICMPv4 packet and executes
each nestedaction on the ICMPv4 packet. Actions following theicmp4 action, if any,
apply to the original, unmodified packet.

The ICMPv4 packet that this action operates on is initialized based on the IPv4 packet
being processed, as follows. These are default values that the nested actions will probably
want to change. Ethernet and IPv4 fields not listed here are not changed:

• ip.proto = 1 (ICMPv4)

• ip.frag = 0 (not a fragment)

• icmp4.type = 3(destination unreachable)

• icmp4.code = 1(host unreachable)

Details TBD.

Prerequisite: ip4

tcp_reset;
This action transforms the current TCP packet according to the following pseudocode:

Open vSwitch 2.8.90 DB Schema 1.15.0 19

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

if (tcp.ack) {
tcp.seq = tcp.ack;

} else {
tcp.ack = tcp.seq + length(tcp.payload);
tcp.seq = 0;

}
tcp.flags = RST;

Then, the action drops all TCP options and payload data, and updates the TCP checksum.

Details TBD.

Prerequisite: tcp

external_ids : stage-name: optional string
Human-readable name for this flow’s stage in the pipeline.

external_ids : stage-hint: optional string, containing an uuid
UUID of a OVN_Northbound record that caused this logical flow to be created. Currently used
only for attribute of logical flows to northboundACL records.

external_ids : source: optional string
Source file and line number of the code that added this flow to the pipeline.

Common Columns:

The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

external_ids: map of string-string pairs

Open vSwitch 2.8.90 DB Schema 1.15.0 20

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Multicast_Group TABLE
The rows in this table define multicast groups of logical ports. Multicast groups allow a single packet trans-
mitted over a tunnel to a hypervisor to be delivered to multiple VMs on that hypervisor, which uses band-
width more efficiently.

Each row in this table defines a logical multicast group numberedtunnel_key within datapath, whose log-
ical ports are listed in theports column.

Summary:
datapath Datapath_Binding
tunnel_key integer, in range 32,768 to 65,535
name string
ports set of 1 or more weak reference toPort_Binding s

Details:
datapath: Datapath_Binding

The logical datapath in which the multicast group resides.

tunnel_key: integer, in range 32,768 to 65,535
The value used to designate this logical egress port in tunnel encapsulations. An index forces the
key to be unique within thedatapath. The unusual range ensures that multicast group IDs do not
overlap with logical port IDs.

name: string
The logical multicast group’s name. An index forces the name to be unique within thedatapath.
Logical flows in the ingress pipeline may output to the group just as for individual logical ports, by
assigning the group’s name tooutport and executing anoutput action.

Multicast group names and logical port names share a single namespace and thus should not over-
lap (but the database schema cannot enforce this). To try to avoid conflicts, ovn−northd uses
names that begin with_MC_.

ports: set of 1 or more weak reference toPort_Binding s
The logical ports included in the multicast group. All of these ports must be in thedatapath logi-
cal datapath (but the database schema cannot enforce this).

Open vSwitch 2.8.90 DB Schema 1.15.0 21

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Datapath_Binding TABLE
Each row in this table represents a logical datapath, which implements a logical pipeline among the ports in
the Port_Binding table associated with it. In practice, the pipeline in a given logical datapath implements
either a logical switch or a logical router.

The main purpose of a row in this table is provide a physical binding for a logical datapath. A logical data-
path does not have a physical location, so its physical binding information is limited: justtunnel_key. The
rest of the data in this table does not affect packet forwarding.

Summary:
tunnel_key integer, in range 1 to 16,777,215 (must be unique

within table)
OVN_Northbound Relationship:

external_ids : logical-switch optional string, containing an uuid
external_ids : logical-router optional string, containing an uuid
Naming:

external_ids : name optional string
external_ids : name2 optional string

Common Columns:
external_ids map of string-string pairs

Details:
tunnel_key: integer, in range 1 to 16,777,215 (must be unique within table)

The tunnel key value to which the logical datapath is bound. TheTunnel Encapsulationsection in
ovn−architecture(7) describes how tunnel keys are constructed for each supported encapsulation.

OVN_Northbound Relationship:

Each row in Datapath_Binding is associated with some logical datapath.ovn−northd uses these keys to
track the association of a logical datapath with concepts in theOVN_Northbound database.

external_ids : logical-switch: optional string, containing an uuid
For a logical datapath that represents a logical switch,ovn−northd stores in this key the UUID of
the correspondingLogical_Switch row in theOVN_Northbound database.

external_ids : logical-router: optional string, containing an uuid
For a logical datapath that represents a logical router, ovn−northd stores in this key the UUID of
the correspondingLogical_Router row in theOVN_Northbound database.

Naming:

ovn−northd copies these from the name fields in theOVN_Northbound database, either fromname and
external_ids:neutron:router_name in the Logical_Router table or fromname and external_ids:neu-
tron:network_name in theLogical_Switch table.

external_ids : name: optional string
A name for the logical datapath.

external_ids : name2: optional string
Another name for the logical datapath.

Common Columns:

The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

external_ids: map of string-string pairs

Open vSwitch 2.8.90 DB Schema 1.15.0 22

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Port_Binding TABLE
Each row in this table binds a logical port to a realization. For most logical ports, this means binding to
some physical location, for example by binding a logical port to a VIF that belongs to a VM running on a
particular hypervisor. Other logical ports, such as logical patch ports, can be realized without a specific
physical location, but their bindings are still expressed through rows in this table.

For every Logical_Switch_Port record inOVN_Northbound database,ovn−northd creates a record in
this table.ovn−northd populates and maintains every column except thechassiscolumn, which it leaves
empty in new records.

ovn−controller /ovn−controller−vtep populates thechassiscolumn for the records that identify the logical
ports that are located on its hypervisor/gateway, which ovn−controller /ovn−controller−vtep in turn finds
out by monitoring the local hypervisor’s Open_vSwitch database, which identifies logical ports via the con-
ventions described inIntegrationGuide.rst. (The exceptions are forPort_Binding records withtype of
l3gateway, whose locations are identified byovn−northd via theoptions:l3gateway−chassiscolumn in
this table.ovn−controller is still responsible to populate thechassiscolumn.)

When a chassis shuts down gracefully, it should clean up thechassiscolumn that it previously had popu-
lated. (This is not critical because resources hosted on the chassis are equally unreachable regardless of
whether their rows are present.) To handle the case where a VM is shut down abruptly on one chassis, then
brought up again on a different one,ovn−controller /ovn−controller−vtep must overwrite thechassiscol-
umn with new information.

Summary:
Core Features:

datapath Datapath_Binding
logical_port string (must be unique within table)
chassis optional weak reference toChassis
gateway_chassis set ofGateway_Chassiss
tunnel_key integer, in range 1 to 32,767
mac set of strings
type string

Patch Options:
options : peer optional string
nat_addresses set of strings

L3 Gateway Options:
options : peer optional string
options : l3gateway-chassis optional string
options : nat-addresses optional string
nat_addresses set of strings

Localnet Options:
options : network_name optional string
tag optional integer, in range 1 to 4,095

L2 Gateway Options:
options : network_name optional string
options : l2gateway-chassis optional string
tag optional integer, in range 1 to 4,095

VTEP Options:
options : vtep-physical-switch optional string
options : vtep-logical-switch optional string

VMI (or VIF) Options:
options : requested-chassis optional string
options : qos_max_rate optional string
options : qos_burst optional string
options : qdisc_queue_id optional string, containing an integer, in range 1 to

61,440

Open vSwitch 2.8.90 DB Schema 1.15.0 23

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Chassis Redirect Options:
options : distributed-port optional string
options : redirect-chassis optional string

Nested Containers:
parent_port optional string
tag optional integer, in range 1 to 4,095

Naming:
external_ids : name optional string

Common Columns:
external_ids map of string-string pairs

Details:
Core Features:

datapath: Datapath_Binding
The logical datapath to which the logical port belongs.

logical_port: string (must be unique within table)
A logical port, taken fromname in the OVN_Northbound database’s Logical_Switch_Port table.
OVN does not prescribe a particular format for the logical port ID.

chassis: optional weak reference toChassis
The meaning of this column depends on the value of thetype column. This is the meaning for
eachtype

(empty string)
The physical location of the logical port. To successfully identify a chassis, this column
must be aChassisrecord. This is populated byovn−controller .

vtep The physical location of the hardware_vtep gateway. To successfully identify a chassis,
this column must be aChassisrecord. This is populated byovn−controller−vtep.

localnet
Always empty. A localnet port is realized on every chassis that has connectivity to the
corresponding physical network.

localport
Always empty. A localport port is present on every chassis.

l3gateway
The physical location of the L3 gateway. To successfully identify a chassis, this column
must be aChassisrecord. This is populated byovn−controller based on the value of the
options:l3gateway−chassiscolumn in this table.

l2gateway
The physical location of this L2 gateway. To successfully identify a chassis, this column
must be aChassisrecord. This is populated byovn−controller based on the value of the
options:l2gateway−chassiscolumn in this table.

gateway_chassis: set ofGateway_Chassiss
A l ist of Gateway_Chassis.

This should only be populated for ports withtype set tochassisredirect. This column defines the
list of chassis used as gateways where traffic will be redirected through.

tunnel_key: integer, in range 1 to 32,767
A number that represents the logical port in the key (e.g. STT key or Geneve TLV) field carried
within tunnel protocol packets.

The tunnel ID must be unique within the scope of a logical datapath.

Open vSwitch 2.8.90 DB Schema 1.15.0 24

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

mac: set of strings
The Ethernet address or addresses used as a source address on the logical port, each in the form
xx:xx:xx:xx:xx:xx. The stringunknown is also allowed to indicate that the logical port has an
unknown set of (additional) source addresses.

A VM i nterface would ordinarily have a single Ethernet address. A gateway port might initially
only haveunknown, and then add MAC addresses to the set as it learns new source addresses.

type: string
A type for this logical port. Logical ports can be used to model other types of connectivity into an
OVN logical switch. The following types are defined:

(empty string)
VM (or VIF) interface.

patch One of a pair of logical ports that act as if connected by a patch cable. Useful for connect-
ing two logical datapaths, e.g. to connect a logical router to a logical switch or to another
logical router.

l3gateway
One of a pair of logical ports that act as if connected by a patch cable across multiple
chassis. Useful for connecting a logical switch with a Gateway router (which is only resi-
dent on a particular chassis).

localnet
A connection to a locally accessible network from eachovn−controller instance. A logi-
cal switch can only have a single localnet port attached. This is used to model direct con-
nectivity to an existing network.

localport
A connection to a local VIF. Traffic that arrives on alocalport is never forwarded over a
tunnel to another chassis. These ports are present on every chassis and have the same
address in all of them. This is used to model connectivity to local services that run on
ev ery hypervisor.

l2gateway
An L2 connection to a physical network. The chassis thisPort_Binding is bound to will
serve as an L2 gateway to the network named byoptions:network_name.

vtep A port to a logical switch on a VTEP gateway chassis. In order to get this port correctly
recognized by the OVN controller, the options:vtep−physical−switch and
options:vtep−logical−switchmust also be defined.

chassisredirect
A logical port that represents a particular instance, bound to a specific chassis, of an oth-
erwise distributed parent port (e.g. of typepatch). A chassisredirectport should never be
used as aninport . When an ingress pipeline sets theoutport , it may set the value to a
logical port of typechassisredirect. This will cause the packet to be directed to a specific
chassis to carry out the egress pipeline. At the beginning of the egress pipeline, theout-
port will be reset to the value of the distributed port.

Patch Options:

These options apply to logical ports withtype of patch.

options : peer: optional string
The logical_port in the Port_Binding record for the other side of the patch. The namedlogi-
cal_port must specify thislogical_port in its own peer option. That is, the two patch logical ports
must have rev ersedlogical_port andpeervalues.

nat_addresses: set of strings
MAC address followed by a list of SNAT and DNAT external IP addresses, followed byis_chas-
sis_resident("lport") , where lport is the name of a logical port on the same chassis where the

Open vSwitch 2.8.90 DB Schema 1.15.0 25

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

corresponding NAT rules are applied. This is used to send gratuitous ARPs for SNAT and DNAT
external IP addresses vialocalnet, from the chassis wherelport resides. Example:
80:fa:5b:06:72:b7 158.36.44.22 158.36.44.24 is_chassis_resident("foo1"). This would result in
generation of gratuitous ARPs for IP addresses 158.36.44.22 and 158.36.44.24 with a MAC
address of 80:fa:5b:06:72:b7 from the chassis where the logical port "foo1" resides.

L3 Gateway Options:

These options apply to logical ports withtype of l3gateway.

options : peer: optional string
The logical_port in the Port_Binding record for the other side of the ’l3gateway’ port. The
namedlogical_port must specify thislogical_port in its own peeroption. That is, the two ’l3gate-
way’ logical ports must have rev ersedlogical_port andpeervalues.

options : l3gateway-chassis: optional string
Thechassisin which the port resides.

options : nat-addresses: optional string
MAC address of thel3gatewayport followed by a list of SNAT and DNAT external IP addresses.
This is used to send gratuitous ARPs for SNAT and DNAT external IP addresses vialocalnet.
Example:80:fa:5b:06:72:b7 158.36.44.22 158.36.44.24. This would result in generation of gratu-
itous ARPs for IP addresses 158.36.44.22 and 158.36.44.24 with a MAC address of
80:fa:5b:06:72:b7. This is used in OVS versions prior to 2.8.

nat_addresses: set of strings
MAC address of thel3gatewayport followed by a list of SNAT and DNAT external IP addresses.
This is used to send gratuitous ARPs for SNAT and DNAT external IP addresses vialocalnet.
Example:80:fa:5b:06:72:b7 158.36.44.22 158.36.44.24. This would result in generation of gratu-
itous ARPs for IP addresses 158.36.44.22 and 158.36.44.24 with a MAC address of
80:fa:5b:06:72:b7. This is used in OVS version 2.8 and later versions.

Localnet Options:

These options apply to logical ports withtype of localnet.

options : network_name: optional string
Required.ovn−controller uses the configuration entryovn−bridge−mappings to determine how
to connect to this network. ovn−bridge−mappings is a list of network names mapped to a local
OVS bridge that provides access to that network. An example of configuringovn−bridge−map-
pingswould be: .IP
$ ovs−vsctl set open . external−ids:ovn−bridge−mappings=physnet1:br−eth0,physnet2:br−eth1

When a logical switch has alocalnet port attached, every chassis that may have a local vif
attached to that logical switch must have a bridge mapping configured to reach thatlocalnet. Traf-
fic that arrives on alocalnetport is never forwarded over a tunnel to another chassis.

tag: optional integer, in range 1 to 4,095
If set, indicates that the port represents a connection to a specific VLAN on a locally accessible
network. The VLAN ID is used to match incoming traffic and is also added to outgoing traffic.

L2 Gateway Options:

These options apply to logical ports withtype of l2gateway.

options : network_name: optional string
Required.ovn−controller uses the configuration entryovn−bridge−mappings to determine how
to connect to this network. ovn−bridge−mappings is a list of network names mapped to a local
OVS bridge that provides access to that network. An example of configuringovn−bridge−map-
pingswould be: .IP
$ ovs−vsctl set open . external−ids:ovn−bridge−mappings=physnet1:br−eth0,physnet2:br−eth1

Open vSwitch 2.8.90 DB Schema 1.15.0 26

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

When a logical switch has al2gatewayport attached, the chassis that thel2gatewayport is bound
to must have a bridge mapping configured to reach the network identified bynetwork_name.

options : l2gateway-chassis: optional string
Required. Thechassisin which the port resides.

tag: optional integer, in range 1 to 4,095
If set, indicates that the gateway is connected to a specific VLAN on the physical network. The
VLAN ID is used to match incoming traffic and is also added to outgoing traffic.

VTEP Options:

These options apply to logical ports withtype of vtep.

options : vtep-physical-switch: optional string
Required. The name of the VTEP gateway.

options : vtep-logical-switch: optional string
Required. A logical switch name connected by the VTEP gateway. Must be set whentype is vtep.

VMI (or VIF) Options:

These options apply to logical ports withtype having (empty string)

options : requested-chassis: optional string
If set, identifies a specific chassis (by name) that is allowed to bind this port. Using this option will
prevent thrashing between two chassis trying to bind the same port during a live migration. It can
also prevent similar thrashing due to a mis-configuration, if a port is accidentally created on more
than one chassis.

options : qos_max_rate: optional string
If set, indicates the maximum rate for data sent from this interface, in bit/s. The traffic will be
shaped according to this limit.

options : qos_burst: optional string
If set, indicates the maximum burst size for data sent from this interface, in bits.

options : qdisc_queue_id: optional string, containing an integer, in range 1 to 61,440
Indicates the queue number on the physical device. This is same as thequeue_idused in Open-
Flow in struct ofp_action_enqueue.

Chassis Redirect Options:

These options apply to logical ports withtype of chassisredirect.

options : distributed-port : optional string
The name of the distributed port for which thischassisredirect port represents a particular
instance.

options : redirect-chassis: optional string
Thechassisthat thischassisredirectport is bound to. This is taken fromoptions:redirect-chassis
in the OVN_Northbound database’sLogical_Router_Port table.

Nested Containers:

These columns support containers nested within a VM. Specifically, they are used whentype is empty and
logical_port identifies the interface of a container spawned inside a VM. They are empty for containers or
VMs that run directly on a hypervisor.

parent_port: optional string
This is taken fromparent_namein the OVN_Northbound database’sLogical_Switch_Port table.

tag: optional integer, in range 1 to 4,095
Identifies the VLAN tag in the network traffic associated with that container’s network interface.

This column is used for a different purpose whentype is localnet (seeLocalnet Options, above)
or l2gateway(seeL2 Gateway Options, above).

Open vSwitch 2.8.90 DB Schema 1.15.0 27

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Naming:

external_ids : name: optional string
For a logical switch port,ovn−northd copies this fromexternal_ids:neutron:port_name in the
Logical_Switch_Port table in the OVN_Northbound database, if it is a nonempty string.

For a logical switch port,ovn−northd does not currently set this key.

Common Columns:

external_ids: map of string-string pairs
SeeExternal IDs at the beginning of this document.

The ovn−northd program populates this column with all entries into theexternal_ids column of
theLogical_Switch_Port table of theOVN_Northbound database.

Open vSwitch 2.8.90 DB Schema 1.15.0 28

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

MAC_Binding TABLE
Each row in this table specifies a binding from an IP address to an Ethernet address that has been discov-
ered through ARP (for IPv4) or neighbor discovery (for IPv6). This table is primarily used to discover bind-
ings on physical networks, because IP-to-MAC bindings for virtual machines are usually populated stati-
cally into thePort_Binding table.

This table expresses a functional relationship:MAC_Binding (logical_port, ip) = mac.

In outline, the lifetime of a logical router’s MAC binding looks like this:

1. On hypervisor 1, a logical router determines that a packet should be forwarded to IP addressA
on one of its router ports. It uses its logical flow table to determine thatA lacks a static IP-to-
MAC binding and theget_arp action to determine that it lacks a dynamic IP-to-MAC bind-
ing.

2. Using an OVN logicalarp action, the logical router generates and sends a broadcast ARP
request to the router port. It drops the IP packet.

3. The logical switch attached to the router port delivers the ARP request to all of its ports. (It
might make sense to deliver it only to ports that have no static IP-to-MAC bindings, but this
could also be surprising behavior.)

4. A host or VM on hypervisor 2 (which might be the same as hypervisor 1) attached to the logi-
cal switch owns the IP address in question. It composes an ARP reply and unicasts it to the
logical router port’s Ethernet address.

5. The logical switch delivers the ARP reply to the logical router port.

6. The logical router flow table executes aput_arp action. To record the IP-to-MAC binding,
ovn−controller adds a row to theMAC_Binding table.

7. On hypervisor 1,ovn−controller receives the updatedMAC_Binding table from the OVN
southbound database. The next packet destined toA through the logical router is sent directly
to the bound Ethernet address.

Summary:
logical_port string
ip string
mac string
datapath Datapath_Binding

Details:
logical_port: string

The logical port on which the binding was discovered.

ip: string
The bound IP address.

mac: string
The Ethernet address to which the IP is bound.

datapath: Datapath_Binding
The logical datapath to which the logical port belongs.

Open vSwitch 2.8.90 DB Schema 1.15.0 29

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

DHCP_Options TABLE
Each row in this table stores the DHCP Options supported by native OVN DHCP. ovn−northd populates
this table with the supported DHCP options.ovn−controller looks up this table to get the DHCP codes of
the DHCP options defined in the "put_dhcp_opts" action. Please refer to the RFC 2132
"https://tools.ietf.org/html/rfc2132" for the possible list of DHCP options that can be defined here.

Summary:
name string
code integer, in range 0 to 254
type string, one ofbool, ipv4, static_routes, str, uint16,

uint32, or uint8

Details:
name: string

Name of the DHCP option.

Example. name="router"

code: integer, in range 0 to 254
DHCP option code for the DHCP option as defined in the RFC 2132.

Example. code=3

type: string, one ofbool, ipv4, static_routes, str, uint16, uint32, or uint8
Data type of the DHCP option code.

value: bool
This indicates that the value of the DHCP option is a bool.

Example. "name=ip_forward_enable", "code=19", "type=bool".

put_dhcp_opts(..., ip_forward_enable = 1,...)

value: uint8
This indicates that the value of the DHCP option is an unsigned int8 (8 bits)

Example. "name=default_ttl", "code=23", "type=uint8".

put_dhcp_opts(..., default_ttl = 50,...)

value: uint16
This indicates that the value of the DHCP option is an unsigned int16 (16 bits).

Example. "name=mtu", "code=26", "type=uint16".

put_dhcp_opts(..., mtu = 1450,...)

value: uint32
This indicates that the value of the DHCP option is an unsigned int32 (32 bits).

Example. "name=lease_time", "code=51", "type=uint32".

put_dhcp_opts(..., lease_time = 86400,...)

value: ipv4
This indicates that the value of the DHCP option is an IPv4 address or addresses.

Example. "name=router", "code=3", "type=ipv4".

put_dhcp_opts(..., router = 10.0.0.1,...)

Example. "name=dns_server", "code=6", "type=ipv4".

put_dhcp_opts(..., dns_server = {8.8.8.8 7.7.7.7},...)

value: static_routes
This indicates that the value of the DHCP option contains a pair of IPv4 route and next
hop addresses.

Open vSwitch 2.8.90 DB Schema 1.15.0 30

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Example. "name=classless_static_route", "code=121", "type=static_routes".

put_dhcp_opts(..., classless_static_route = {30.0.0.0/24,10.0.0.4,0.0.0.0/0,10.0.0.1}...)

value: str
This indicates that the value of the DHCP option is a string.

Example. "name=host_name", "code=12", "type=str".

Open vSwitch 2.8.90 DB Schema 1.15.0 31

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

DHCPv6_Options TABLE
Each row in this table stores the DHCPv6 Options supported by native OVN DHCPv6.ovn−northd popu-
lates this table with the supported DHCPv6 options.ovn−controller looks up this table to get the DHCPv6
codes of the DHCPv6 options defined in theput_dhcpv6_optsaction. Please refer to RFC 3315 and RFC
3646 for the list of DHCPv6 options that can be defined here.

Summary:
name string
code integer, in range 0 to 254
type string, one ofipv6, mac, or str

Details:
name: string

Name of the DHCPv6 option.

Example. name="ia_addr"

code: integer, in range 0 to 254
DHCPv6 option code for the DHCPv6 option as defined in the appropriate RFC.

Example. code=3

type: string, one ofipv6, mac, or str
Data type of the DHCPv6 option code.

value: ipv6
This indicates that the value of the DHCPv6 option is an IPv6 address(es).

Example. "name=ia_addr", "code=5", "type=ipv6".

put_dhcpv6_opts(..., ia_addr = ae70::4,...)

value: str
This indicates that the value of the DHCPv6 option is a string.

Example. "name=domain_search", "code=24", "type=str".

put_dhcpv6_opts(..., domain_search = ovn.domain,...)

value: mac
This indicates that the value of the DHCPv6 option is a MAC address.

Example. "name=server_id", "code=2", "type=mac".

put_dhcpv6_opts(..., server_id = 01:02:03:04L05:06,...)

Open vSwitch 2.8.90 DB Schema 1.15.0 32

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Connection TABLE
Configuration for a database connection to an Open vSwitch database (OVSDB) client.

This table primarily configures the Open vSwitch database server (ovsdb−server).

The Open vSwitch database server can initiate and maintain active connections to remote clients. It can also
listen for database connections.

Summary:
Core Features:

target string (must be unique within table)
read_only boolean
role string

Client Failure Detection and Handling:
max_backoff optional integer, at least 1,000
inactivity_probe optional integer

Status:
is_connected boolean
status : last_error optional string
status : state optional string, one ofACTIVE , BACKOFF , CON-

NECTING , IDLE , or VOID
status : sec_since_connect optional string, containing an integer, at least 0
status : sec_since_disconnect optional string, containing an integer, at least 0
status : locks_held optional string
status : locks_waiting optional string
status : locks_lost optional string
status : n_connections optional string, containing an integer, at least 2
status : bound_port optional string, containing an integer

Common Columns:
external_ids map of string-string pairs
other_config map of string-string pairs

Details:
Core Features:

target: string (must be unique within table)
Connection methods for clients.

The following connection methods are currently supported:

ssl:ip[:port]
The specified SSLport on the host at the given ip, which must be expressed as an IP
address (not a DNS name). A valid SSL configuration must be provided when this form is
used, this configuration can be specified via command-line options or theSSL table.

If port is not specified, it defaults to 6640.

SSL support is an optional feature that is not always built as part of Open vSwitch.

tcp:ip[:port]
The specified TCPport on the host at the given ip, which must be expressed as an IP
address (not a DNS name), whereip can be IPv4 or IPv6 address. Ifip is an IPv6 address,
wrap it in square brackets, e.g.tcp:[::1]:6640.

If port is not specified, it defaults to 6640.

pssl:[port][:ip]
Listens for SSL connections on the specified TCPport. Specify 0 forport to have the ker-
nel automatically choose an available port. If ip, which must be expressed as an IP
address (not a DNS name), is specified, then connections are restricted to the specified
local IP address (either IPv4 or IPv6 address). Ifip is an IPv6 address, wrap in square
brackets, e.g.pssl:6640:[::1]. If ip is not specified then it listens only on IPv4 (but not

Open vSwitch 2.8.90 DB Schema 1.15.0 33

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

IPv6) addresses. A valid SSL configuration must be provided when this form is used, this
can be specified either via command-line options or theSSL table.

If port is not specified, it defaults to 6640.

SSL support is an optional feature that is not always built as part of Open vSwitch.

ptcp:[port][:ip]
Listens for connections on the specified TCPport. Specify 0 forport to have the kernel
automatically choose an available port. If ip, which must be expressed as an IP address
(not a DNS name), is specified, then connections are restricted to the specified local IP
address (either IPv4 or IPv6 address). Ifip is an IPv6 address, wrap it in square brackets,
e.g.ptcp:6640:[::1]. If ip is not specified then it listens only on IPv4 addresses.

If port is not specified, it defaults to 6640.

When multiple clients are configured, thetarget values must be unique. Duplicatetarget values
yield unspecified results.

read_only: boolean
true to restrict these connections to read-only transactions,false to allow them to modify the data-
base.

role: string
String containing role name for this connection entry.

Client Failure Detection and Handling:

max_backoff: optional integer, at least 1,000
Maximum number of milliseconds to wait between connection attempts. Default is implementa-
tion-specific.

inactivity_probe: optional integer
Maximum number of milliseconds of idle time on connection to the client before sending an inac-
tivity probe message. If Open vSwitch does not communicate with the client for the specified
number of seconds, it will send a probe. If a response is not received for the same additional
amount of time, Open vSwitch assumes the connection has been broken and attempts to reconnect.
Default is implementation-specific. A value of 0 disables inactivity probes.

Status:

Ke y-value pair ofis_connectedis always updated. Other key-value pairs in the status columns may be
updated depends on thetarget type.

When target specifies a connection method that listens for inbound connections (e.g.ptcp: or punix:),
both n_connectionsand is_connectedmay also be updated while the remaining key-value pairs are omit-
ted.

On the other hand, whentarget specifies an outbound connection, all key-value pairs may be updated,
except the above-mentioned two key-value pairs associated with inbound connection targets. They are omit-
ted.

is_connected: boolean
true if currently connected to this client,falseotherwise.

status : last_error: optional string
A human-readable description of the last error on the connection to the manager; i.e.str-
error(errno) . This key will exist only if an error has occurred.

status : state: optional string, one ofACTIVE , BACKOFF , CONNECTING , IDLE , or VOID
The state of the connection to the manager:

VOID Connection is disabled.

Open vSwitch 2.8.90 DB Schema 1.15.0 34

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

BACKOFF
Attempting to reconnect at an increasing period.

CONNECTING
Attempting to connect.

ACTIVE
Connected, remote host responsive.

IDLE Connection is idle. Waiting for response to keep-alive.

These values may change in the future. They are provided only for human consumption.

status : sec_since_connect: optional string, containing an integer, at least 0
The amount of time since this client last successfully connected to the database (in seconds). Value
is empty if client has never successfully been connected.

status : sec_since_disconnect: optional string, containing an integer, at least 0
The amount of time since this client last disconnected from the database (in seconds). Value is
empty if client has never disconnected.

status : locks_held: optional string
Space-separated list of the names of OVSDB locks that the connection holds. Omitted if the con-
nection does not hold any locks.

status : locks_waiting: optional string
Space-separated list of the names of OVSDB locks that the connection is currently waiting to
acquire. Omitted if the connection is not waiting for any locks.

status : locks_lost: optional string
Space-separated list of the names of OVSDB locks that the connection has had stolen by another
OVSDB client. Omitted if no locks have been stolen from this connection.

status : n_connections: optional string, containing an integer, at least 2
When target specifies a connection method that listens for inbound connections (e.g.ptcp: or
pssl:) and more than one connection is actually active, the value is the number of active connec-
tions. Otherwise, this key-value pair is omitted.

status : bound_port: optional string, containing an integer
Whentarget is ptcp: or pssl:, this is the TCP port on which the OVSDB server is listening. (This
is particularly useful whentarget specifies a port of 0, allowing the kernel to choose any available
port.)

Common Columns:

The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

external_ids: map of string-string pairs

other_config: map of string-string pairs

Open vSwitch 2.8.90 DB Schema 1.15.0 35

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

SSL TABLE
SSL configuration for ovn-sb database access.

Summary:
pri vate_key string
certificate string
ca_cert string
bootstrap_ca_cert boolean
ssl_protocols string
ssl_ciphers string
Common Columns:

external_ids map of string-string pairs

Details:
pri vate_key: string

Name of a PEM file containing the private key used as the switch’s identity for SSL connections to
the controller.

certificate: string
Name of a PEM file containing a certificate, signed by the certificate authority (CA) used by the
controller and manager, that certifies the switch’s private key, identifying a trustworthy switch.

ca_cert: string
Name of a PEM file containing the CA certificate used to verify that the switch is connected to a
trustworthy controller.

bootstrap_ca_cert: boolean
If set to true, then Open vSwitch will attempt to obtain the CA certificate from the controller on
its first SSL connection and save it to the named PEM file. If it is successful, it will immediately
drop the connection and reconnect, and from then on all SSL connections must be authenticated
by a certificate signed by the CA certificate thus obtained.This option exposes the SSL connec-
tion to a man−in−the−middle attack obtaining the initial CA certificate.It may still be useful
for bootstrapping.

ssl_protocols: string
List of SSL protocols to be enabled for SSL connections. The default when this option is omitted
is TLSv1,TLSv1.1,TLSv1.2.

ssl_ciphers: string
List of ciphers (in OpenSSL cipher string format) to be supported for SSL connections. The
default when this option is omitted isHIGH:!aNULL:!MD5 .

Common Columns:

The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

external_ids: map of string-string pairs

Open vSwitch 2.8.90 DB Schema 1.15.0 36

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

DNS TABLE
Each row in this table stores the DNS records. The OVN actiondns_lookupuses this table for DNS resolu-
tion.

Summary:
records map of string-string pairs
datapaths set of 1 or moreDatapath_Bindings
Common Columns:

external_ids map of string-string pairs

Details:
records: map of string-string pairs

Ke y-value pair of DNS records withDNS query nameas the key and a string of IP address(es)
separated by comma or space as the value.

Example: "vm1.ovn.org" = "10.0.0.4 aef0::4"

datapaths: set of 1 or moreDatapath_Bindings
The DNS records defined in the columnrecords will be applied only to the DNS queries originat-
ing from the datapaths defined in this column.

Common Columns:

external_ids: map of string-string pairs
SeeExternal IDs at the beginning of this document.

Open vSwitch 2.8.90 DB Schema 1.15.0 37

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

RBAC_Role TABLE
Role table for role-based access controls.

Summary:
name string
permissions map of string-weak reference toRBAC_Permission

pairs

Details:
name: string

The role name, corresponding to therole column in theConnectiontable.

permissions: map of string-weak reference toRBAC_Permissionpairs
A mapping of table names to rows in theRBAC_Permissiontable.

Open vSwitch 2.8.90 DB Schema 1.15.0 38

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

RBAC_Permission TABLE
Permissions table for role-based access controls.

Summary:
table string
authorization set of strings
insert_delete boolean
update set of strings

Details:
table: string

Name of table to which this row applies.

authorization: set of strings
Set of strings identifying columns and column:key pairs to be compared with client ID. At least
one match is required in order to be authorized. A zero-length string is treated as a special value
indicating all clients should be considered authorized.

insert_delete: boolean
When "true", row insertions and authorized row deletions are permitted.

update: set of strings
Set of strings identifying columns and column:key pairs that authorized clients are allowed to
modify.

Open vSwitch 2.8.90 DB Schema 1.15.0 39

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Gateway_Chassis TABLE
Association ofPort_Binding rows of type chassisredirect to a Chassis. The traffic going out through a
specificchassisredirectport will be redirected to a chassis, or a set of them in high availability configura-
tions.

Summary:
name string (must be unique within table)
chassis optional weak reference toChassis
priority integer, in range 0 to 32,767
options map of string-string pairs
Common Columns:

external_ids map of string-string pairs

Details:
name: string (must be unique within table)

Name of theGateway_Chassis.

A suggested, but not required naming convention is${port_name}_${chassis_name}.

chassis: optional weak reference toChassis
TheChassisto which we send the traffic.

priority : integer, in range 0 to 32,767
This is the priority the specificChassis among all Gateway_Chassis belonging to the same
Port_Binding .

options: map of string-string pairs
Reserved for future use.

Common Columns:

The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

external_ids: map of string-string pairs

Open vSwitch 2.8.90 DB Schema 1.15.0 40

