OVN: Open Virtual Network for Open vSwitch

Russell Bryant (@russellbryant)
Kyle Mestery (@mestery)
Justin Pettit (@Justin_D_Pettit)
Virtual Networking Overview

Provides a logical network abstraction on top of a physical network
What is OVN?

• Open source virtual networking for Open vSwitch (OVS)
• Provides L2/L3 virtual networking
 – Logical switches and routers
 – Security groups
 – L2/L3/L4 ACLs
 – Multiple tunnel overlays (Geneve, STT, and VXLAN)
 – TOR-based and software-based logical-physical gateways
• Work on same platforms as OVS
 – Linux (KVM and Xen)
 – Containers
 – DPDK
 – Hyper-V
• Integration with OpenStack and other CMSs
The Particulars

• Developed by the same community as Open vSwitch
• Vendor-neutral
• Architecture and implementation have all occurred on public mailing lists
• Developed under the Apache license
Goals

• Production-quality
• Straight-forward design
• Scale to thousands of hypervisors (each with many VMs and containers)
• Improved performance and stability over existing plugin
Why OVN is different

• Will not require any additional agents for functionality for simplified deployment and debugging

• Security groups using new in-kernel conntrack integration
 – More secure and faster than other methods
 – “Taking Security Groups to Ludicrous Speed with Open vSwitch” at 9:50 on Thursday

• DPDK-based and hardware-accelerated gateways
 – Leverages new OVS DPDK port
 – Works with switches from Arista, Brocade, Cumulus, Dell, HP, Juniper, and Lenovo
Why OVN is Important to OpenStack
Why OVN is Important to OpenStack

- Neutron’s default backend is a custom virtual networking control plane

- Long term, we feel Neutron is best served letting a separate project implement the virtual network control plane
Why OVN is Important to OpenStack

- Migration from OVS backend to OVN is very natural for Neutron

- Just taking advantage of increasing functionality in OVS, which is already in use
OpenStack Neutron Platform

- Neutron evolving to be a platform
 - First step: Plugin decomposition
 - Second step: Bringing the plugin and driver backends under the Neutron tent
 - Third step: Open Source backends mature
- OVN fits into this Neutron Platform model
Neutron Integration with OVN

- ML2 driver for OVN
 - replaces OVS ML2 driver and Neutron’s OVS agent

- Uses Neutron L3 and DHCP agents, but just until OVN support is ready
Designed to Scale

- Configuration coordinated through databases
- Local controller converts logical flow state into physical flow state
- Desired state clearly separated from run-time state
- Grouping techniques reduce Cartesian Product issues
OVN Architecture

- **ovn-northd**
- **ovn-controller**
- **ovsdb-server**
- **ovs-vswitchd**

Northbound DB — OpenStack/CMS Plugin

Southbound DB

HV-1

HV-n

...
The OVN Databases

• **ovn-northbound**
 – OpenStack/CMS integration point
 – High-level, desired state
 • Logical ports -> logical switches -> logical routers

• **ovn-southbound**
 – Run-time state
 • Location of logical ports
 • Location of physical endpoints
 • Logical pipeline generated based on configured and run-time state
The Daemons

- **ovn-northd**
 - Converts from the high-level northbound DB to the run-time southbound DB
 - Generates logical flows based on high-level configuration

- **ovn-controller**
 - Registers chassis and VIFs to southbound DB
 - Converts logical flows into physical flows (i.e., VIF UUIDs to OpenFlow ports)
 - Pushes physical configuration to local OVS instance through OVSDB and OpenFlow
An Example

Logical Switch

<table>
<thead>
<tr>
<th>Name</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1</td>
<td>LP1,LP2</td>
</tr>
</tbody>
</table>

Logical Port

<table>
<thead>
<tr>
<th>Name</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP1</td>
<td>AA</td>
</tr>
<tr>
<td>LP2</td>
<td>BB</td>
</tr>
</tbody>
</table>

Chassis (ovn-controller)

<table>
<thead>
<tr>
<th>Name</th>
<th>Encap</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV1</td>
<td>Geneve</td>
<td>10.0.0.10</td>
</tr>
<tr>
<td>HV2</td>
<td>Geneve</td>
<td>10.0.0.11</td>
</tr>
</tbody>
</table>

Bindings (ovn-controller)

<table>
<thead>
<tr>
<th>Name</th>
<th>Chassis</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP1</td>
<td>HV1</td>
</tr>
</tbody>
</table>

Pipeline (ovn-northd)

<table>
<thead>
<tr>
<th>Datapath</th>
<th>Match</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1</td>
<td>eth.dst = AA</td>
<td>LP1</td>
</tr>
<tr>
<td>LS1</td>
<td>eth.dst = BB</td>
<td>LP2</td>
</tr>
<tr>
<td>LS1</td>
<td>eth.dst = <broadcast></td>
<td>LP1,LP2</td>
</tr>
</tbody>
</table>
LP2 Arrives on HV2

Chassis (ovn-controller)

<table>
<thead>
<tr>
<th>Name</th>
<th>Encap</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV1</td>
<td>Geneve</td>
<td>10.0.0.10</td>
</tr>
<tr>
<td>HV2</td>
<td>Geneve</td>
<td>10.0.0.11</td>
</tr>
</tbody>
</table>

Bindings (ovn-controller)

<table>
<thead>
<tr>
<th>Name</th>
<th>Chassis</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP1</td>
<td>HV1</td>
</tr>
<tr>
<td>LP2</td>
<td>HV2</td>
</tr>
</tbody>
</table>

Pipeline (ovn-northd)

<table>
<thead>
<tr>
<th>Datapath</th>
<th>Match</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1</td>
<td>eth.dst = AA</td>
<td>LP1</td>
</tr>
<tr>
<td>LS1</td>
<td>eth.dst = BB</td>
<td>LP2</td>
</tr>
<tr>
<td>LS1</td>
<td>eth.dst = <broadcast></td>
<td>LP1,LP2</td>
</tr>
</tbody>
</table>
Resources

• Architecture described in detail in ovn-architecture (5)
• Configuration is through a number of databases
 – OVN Northbound – Interface between CMS and OVN (ovn-nb (5))
 – OVN Southbound – Holds the configuration and state of the logical
 and physical components (ovn-sb (5))
• Available in the “ovn” branch of the main OVS repo:
 – https://github.com/openvswitch/ovs/tree/ovn
Status – The EZ Bake Milestone

• From start of coding to first ping: 6 weeks
• Needs more testing, obviously
• Haven’t tried any scale testing
• Features listed on first page should be ready by end of the year
• Expect rapid progress!
Neutron with built-in solution

neutron-server

DB

rabbitmq

OVS agent

L3 agent

DHCP agent

Adv. Services
Neutron with OVN (so far)
Neutron with OVN (later this year)
Trying out OVN
Test #1 - ovs-sandbox

$ git clone http://github.com/openvswitch/ovs.git
$ cd ovs
$ git checkout -b ovn origin/ovn
$./boot.sh && ./configure && make
$ make sandbox SANDBOXFLAGS="--ovn"
Test #1 - ovs-sandbox

$ ovn-nbctl lswitch-add sw0
$ ovn-nbctl lport-add sw0 sw0-port1
$ ovn-nbctl lport-add sw0 sw0-port2
$ ovn-nbctl lport-set-macs sw0-port1 00:00:00:00:00:01
$ ovn-nbctl lport-set-macs sw0-port2 00:00:00:00:00:02
$ ovs-vsctl add-port br-int lport1 -- \
 set Interface lport1 external_ids:iface-id=sw0-port1
$ ovs-vsctl add-port br-int lport2 -- \
 set Interface lport2 external_ids:iface-id=sw0-port2
Test #1 - ovs-sandbox

Trace OpenFlow flows for a packet from port 1 to 2
$ ovs-appctl ofproto/trace br-int \
 in_port=1,dl_src=00:00:00:00:00:01,\
 dl_dst=00:00:00:00:00:02 -generate
Test #2 - Multi-node DevStack

$ git clone http://git.openstack.org/openstack-dev/devstack.git
$ git clone http://git.openstack.org/stackforge/networking-ovn.git
$ cd devstack
... Get local.conf from networking-ovn/devstack/
... local.conf.sample or computenode-local.conf.sample
$./stack.sh
More cool stuff that works

- Can be used to create overlay networks for containers across many hosts

- If OVN backs Neutron, containers in VMs can be hooked up to virtual networks managed by Neutron
What’s Next for Core OVN

• Security groups using in-kernel conntrack
• ovn-controller that translates to “vtep” schema to enable physical gateways
• OVS-DPDK gateway that uses “vtep” schema
• L3 routing and native IP management
• New test framework that allows local build-time testing with tunnels and arbitrary topologies
• Merge “ovn” into OVS master branch
OVN Neutron Integration Future

- L3 service plugin
- security groups
- get tempest CI job passing
- create multi-node CI job
Longer Term

• DPDK datapath
 – Move beyond the capabilities of the “vtep” schema to support fail-over, scale-out, and more stateful services
 – Will become a reference for building OVS DPDK applications
• Architecture will allow innovation in the logical network space
 – New approaches to networking and security
How you can help

• Try it! Test it! Write Code!
• Report bugs and try it at scale
• Core OVN is being developed on ovs-dev mailing list:
 – http://openvswitch.org/pipermail/dev/
 – #openvswitch on Freenode
• Neutron plugin for OVN is being developed here:
 – http://git.openstack.org/stackforge/networking-ovn.git
 – openstack-dev mailing list
 – #openstack-neutron-ovn on Freenode
Thank you!

Russell Bryant (@russellbryant)
Kyle Mestery (@mestery)
Justin Pettit (@Justin_D_Pettit)