Geneve: What Is It and Why Is OVN Using It?

Jesse Gross, VMware

OVS Conference

November 16, 2015
Existing Formats (VXLAN, NVGRE, STT)

• Tied to control plane, linking unrelated components.
 • Flood and learn, or other control plane semantics

• Lack extensibility to allow data plane innovation.

Possible uses of extensibility:
 • Checksums/Encryption
 • Security - ACLs
 • OAM
 • Unknown Future
Co-Authors

- Jesse Gross, VMware
- T. Sridhar, VMware
- Pankaj Garg, Microsoft
- Chris Wright, Red Hat
- Ilango Ganga, Intel
- Puneet Agarwal, Innovium
- Ken Duda, Arista
- Dinesh Dutt, Cumulus
- Jon Hudson, Brocade

https://tools.ietf.org/html/draft-ietf-nvo3-geneve-00
Geneve Overview

• Extensible encapsulation format to allow for future innovation

• Decouple control plane and data plane components to allow different rates of evolution

• Continue to use standard IP fabrics as an underlay

• Support for multiple encapsulated protocols and OAM

Geneve combines a UDP shim, small base header, and TLV options to achieve these goals.
Header Format

UDP:

```
<table>
<thead>
<tr>
<th>Ver</th>
<th>Opt Len</th>
<th>O</th>
<th>C</th>
<th>Rsvd.</th>
<th>Next Protocol</th>
</tr>
</thead>
</table>
```

Geneve Base Header:

```
<table>
<thead>
<tr>
<th>Ver</th>
<th>Opt Len</th>
<th>O</th>
<th>C</th>
<th>Rsvd.</th>
<th>Next Protocol</th>
</tr>
</thead>
</table>
```

Options:

```
<table>
<thead>
<tr>
<th>Option Class</th>
<th>Type</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>Length</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Variable Option Data</th>
</tr>
</thead>
</table>
```
Implementations

Controller:
• Open Virtual Networking (OVN)

Software Endpoint:
• Open vSwitch
• Linux

Debugging Tool:
• Wireshark
• tcpdump
• libpcap

NIC:
• Intel XL710
• Mellanox ConnectX-4
• Broadcom NetXtreme
• QLogic 578xx
• Netronome NFP-6xxx

Switching ASIC:
• Broadcom Trident 2+/DNX
• Cavium XPliant
• Mellanox Spectrum
• Intel Red Rock Canyon
• Centec GoldenGate
• Marvell Prestera
Geneve In OVN

OVN uses Geneve metadata to direct traffic through the virtual network.

This enables common ACLs and efficient implementation of concepts like multicast groups.

Elements:

- Datapath ID (24-bits)
- Ingress Port (15 bits)
- Egress Port (16 bits)
Future - Telemetry

In-band Network Telemetry (INT) is a framework to allow collection of fabric state.

Stores metadata in Geneve headers upon request.

Examples:

• Packet path
• Hop-by-hop latency
• Buffer status